



# Prevention and Management of Herbicide Drift Kassim Al-Khatib

# University of California





# **Topics for Discussion**

- Herbicide drift definition and types
- Factors affecting Drift
- Managing drift
- Herbicide injury symptoms and investigating herbicide drift damage

# What is herbicide drift

- Physical movement of a herbicide through air at the time of application or soon thereafter, to any site other than that intended for
  - Unintentional exposure for humans, animals, and plants





















# **Herbicide Drift Cost**

- Reduced weed control/waste herbicide
- Damage to non-target plants
  - Replanting
  - Reduced yield
  - Delayed maturity and harvest
  - Reduced crop quality
- Contaminated food with unacceptable herbicide residues
- Livestock, natural resources, and human health/safety
- Fine and loss business
- Litigation concerns

# Herbicide Drift

VolatilitySpray droplets

#### Herbicide Drift Damage

- Crop/plant sensitivity to herbicide
- Plant growth stages
- Growth conditions
- Multiple hits with herbicide

Wind direction/day two

Wind direction/day one

Clomazone

Herbicide vapor pressure (Pa) at 77 F

Nicosulfuron Glyphosate Simazine 2,4-D (acid) Clomazone Dichlobenil Metham sodium Water 1.6 x 10<sup>-14</sup> 2.45 x 10<sup>-8</sup> 2.9 x 10<sup>-6</sup> 1.9 x 10<sup>-5</sup> 1.92 x 10<sup>-2</sup> 1.33 x 10<sup>-1</sup> 3200 3162

#### • Formulation

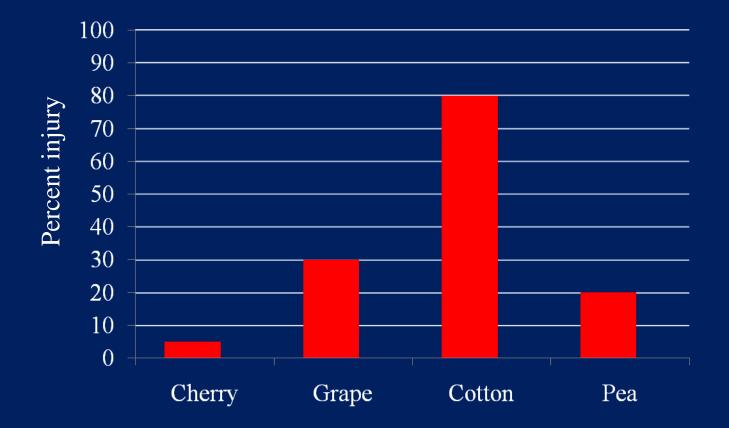
#### Dicamba

- Banvel- dimethylamine salt of dicamba (Banvel)
- Clarity- diglycolamine salt of 3,6-dichloro-o-anisic acid (Clarity)
- 2,4-D
  - 2,4-D dimethylamine salt less volatility
  - <sup>–</sup> 2,4-D ester
    - Short chain high volatility
    - Long chain lower volatility

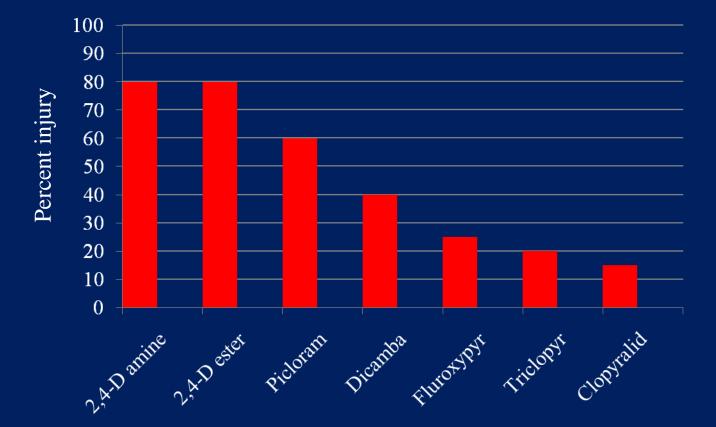
Volatility ratio: amine: long chain ester: short chain ester 1:30:330

- Weather conditions
  - Temperature 90 F
  - Relative humidity
  - Wind speed
- Soil conditions
  - Moisture

# Spray Droplet Drift Physical Drift


• Field experiments

Ground applications – up to 8% drift Aerial application – up to 35% drift


• Ag DRIFT Model

| <u>Distant (ft)</u> | <u>Favorable</u> | <u>unfavorable</u> |
|---------------------|------------------|--------------------|
| 1000                | 0.11%            | <0.1%              |
| 500                 | 0.3%             | 0.1%               |
| 300                 | 0.9%             | 0.5%               |
| 100                 | 3.5%             | 0.7%               |

#### Plant response to 1/100 2,4-D simulated drift rate 14 days after exposure



#### Cotton response to 1/100 2,4-D simulated drift rate 14 days after exposure





#### **Relationship Between Droplet Size** and Drift

| Droplet size<br>(microns) | Droplet life (s) | Drift distance*<br>(ft) |
|---------------------------|------------------|-------------------------|
| 20                        | 0.64             | 1126                    |
| 50                        | 3.5              | 180                     |
| 100                       | 14               | 50                      |
| 150                       | 36               | 27                      |
| 200                       | 56               | 17                      |
| 500                       | 400              | 7                       |

\* In 10 ft fall with 3 m/h wind

# **Spray Droplets Drift**

- Droplet size (below 200 microns)
  - Proper Nozzle
  - Pressure
  - Spray volume
  - Constantly calibrate sprayer
  - Position nozzles to allow for wind shear in aerial application















# Sprayer Components:

- Tanks
- Pump, Strainers, Agitation
- Pressure gauge
- Hoses, Flow control assemblies
- Electronics: monitors-computers- controllers (GPS/GIS)
- Distribution system
- Nozzles Not expensive but KEY!





















#### Nozzle Technology.....

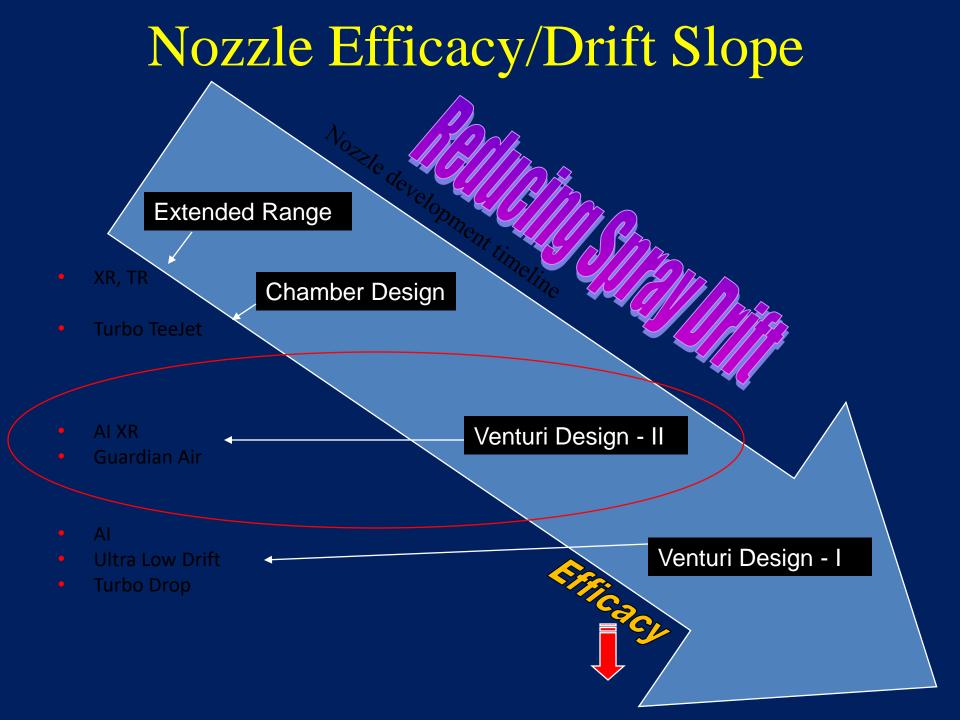
- Nozzles designed to reduce drift
- Improved drop size control
- Emphasis on 'Spray Quality'



flat-fan








#### chamber



### air induced

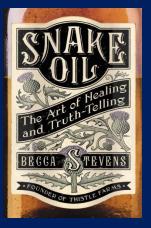




# Calibration!!! The next phase! A new concept for applicators

Ensuring that the spray droplet spectrum is what it is supposed to be to maximize efficacy while minimizing drift!

# **Spray Droplet Drift**


- Weather conditions
  - Avoid high temperature and low relative humidity conditions – use drift control additives
  - Wind speeds are a minimum of 3 mph but less than 10 mph
  - Avoid herbicide application in no-wind conditions because it may indicate a thermal inversion

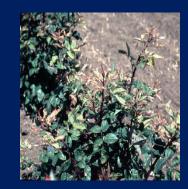




### **Drift Reduction Additives**

- Many available!
- Not EPA regulated
- Long chain polymers
- Reduction in off-target movement
- Not all will work!!!!
- Pump shear problems
- Effect on the pattern?






Snake oil is wonderful stuff!

#### **Herbicide Drift Injury**

- Chemical analysis
  - Cost
  - Detection levels
  - Timing
  - Residue and crop damage
- Immunoassy analysis
  - Specific
  - Qualitative
  - Available for few herbicides
- **Symptoms**







# **How to Inspect Drift Cases**

- Chemical analysis
- Symptoms

# **Symptoms**

Cheap

Simple

Detection levels

# **Symptoms**

- No positive identification
- Training
- Different herbicides may cause similar symptoms
- Herbicide symptoms may be similar to symptoms caused by biotic and abiotic stresses, nutrient deficiency, and pollutant

























#### Contact Information

Kassim Al-Khatib Professor University of California, Davis

279A Robbins Hall One Shields Avenue Davis, CA 95616

530-752-9160 (office) 530-219-0529 (mobile) kalkhatib@ucdavis.edu



#### http://herbicidesymptoms.ipm.ucanr.edu/

# Strategies to Reduce Drift

- Apply IPM principles to reduce herbicide used
- Select nozzle to increase drop size
- Increase flow rates higher application volumes
- Use lower pressures
- Use lower spray (boom) heights
- Avoid high application speeds/rapid speed changes
- Avoid adverse weather conditions
  - High winds, light & variable winds, calm air
- Consider using buffer zones
- Consider using new technologies:
  - drift reduction nozzles
  - drift reduction additives
  - shields, air-assist









