Part IV. Plant Assessment Form

For use with "Criteria for Categorizing Invasive Non-Native Plants that Threaten Wildlands" by the California Exotic Pest Plant Council and the Southwest Vegetation Management Association

Electronic version, February 28, 2003

Table 1. Species and Evaluator Information

Species name (Latin binomial):	Erodium cicutarium (L.) L'Her.
Synonyms:	
Common names:	filaree, redstem filaree, redstem stork's bill
Evaluation date (mm/dd/yy):	2/1/05
Evaluator #1 Name/Title:	Elizabeth Brusati, project manager
Affiliation:	California Invasive Plant Council
Phone numbers:	510-843-3902
Email address:	edbrusati@cal-ipc.org
Address:	1442A Walnut St. #462, Berkeley, CA 94709
Evaluator #2 Name/Title:	Joseph DiTomaso
Affiliation:	University of California-Davis
Phone numbers:	530-754-8715
Email address:	jmditomaso@ucdavis.edu
Address:	Dept. Plant Sci., Mail Stop 4, Davis, CA 95616

Section below for list committee use—please leave blank

List committee members:	Joe DiTomaso, Joanna Clines, Cynthia Roye, Doug Johnson
Committee review date:	7/8/05
List date:	enter text here
Re-evaluation date(s):	enter text here

General	commen	ts on this	assessment
General	COMME	to on tino	assessinent

In grasslands, E. botrys, E. brachycarpum, and E. cicutarium all coexist and behave similarly.

Table 2. Criteria, Section, and Overall Scores

<u>1.1</u>	Impact on abiotic ecosystem processes	D	Observational
1.2	Impact on plant community	C	Rev'd, Sci. Pub'n
1.3	Impact on higher trophic levels	D	Rev'd, Sci. Pub'n
1.4	Impact on genetic integrity	D	Other Pub. Mat'l

Impact

Enter four characters from Q1.1-1.4 below:

DCDD

Using matrix, determine score and enter below:

 \mathbf{C}

2.1	Role of anthropogenic and natural disturbance	C (1 pt)	Rev'd, Sci. Pub'n
2.2	Local rate of spread with no management	C (1 pt)	Observational
2.3	Recent trend in total area infested within state	C (1 pt)	Observational
2.4	Innate reproductive potential Wksht A	B (2 pts)	Other Pub. Mat'l
2.5	Potential for human-caused dispersal	B (2 pts)	Other Pub. Mat'l
2.6	Potential for natural long- distance dispersal	B (2 pts)	Other Pub. Mat'l
<u>2.7</u>	Other regions invaded	C (1 pt)	Rev'd, Sci. Pub'n

Invasiveness

Enter the sum total of all points for Q2.1-2.7 below:

10

Use matrix to determine score and enter below:

 \mathbf{C}

Plant Score

Using matrix, determine Overall Score and Alert Status from the three section scores and enter below:

> Low No Alert

3.1	Ecological amplitude/Range	A	Rev'd, Sci. Pub'n
3.2	Distribution/Peak frequency Wksht C	A	Observational

Distribution

Using matrix, determine score and enter below:

A

Table 3. Documentation

Question 1.1 Impact on abiotic ecosystem processes

D Observational back

Identify ecosystem processes impacted: Do not appear to have significant impact on abiotic processes.

Rationale: enter text here

Sources of information: DiTomaso, observational

Question 1.2 Impact on plant community composition, structure, and interactions C Rev'd, Sci. Pub'n <u>back</u> Identify type of impact or alteration: May be able to outcompete native species. Forms large basal rosettes of leaves that can kill nearby plants (1), but this generally only occurs after disturbance, such as fire and they are quickly outcompeted within a year or two of fire.

Rationale: enter text here

Sources of information: 1. Coomes, D. A., M. Rees, P. J. Grubb, and L. Turnbull. 2002. Are differences in seed mass among species important in structuring plant communities? Evidence from analyses of spatial and temporal variation in dune-annual populations. Oikos 96(3): 421-432.

Kyser and DiTomaso, 2002. Weed Science

Question 1.3 Impact on higher trophic levels

D Rev'd, Sci. Pub'n back

Identify type of impact or alteration: Forms a mutualistic relationship with endangered kangaroo rats, which eat the seeds (1, 2). Also eaten by desert tortoises (3). Good forage for wildlife although when they form a dominant stand after fire then can reduce annual grasses and limit late season forage. I could not find specific descriptions of negative impacts.

Rationale: 1. Schiffman, P. M. 1994. Promotion of exotic weed establishment by endangered giant kangaroo rats (Dipodomys ingens) in a California grassland. Biodiversity & Conservation 3(6): 524-537.

- 2. Inouye, R. S. 1981. Interactions among Unrelated Species Granivorous Rodents a Parasitic Fungus and a Shared Prey Species. Oecologia 49(3): 425-427.
- 2. Hazard, L. C., D. R. Shemanski, and K. A. Nagy. 2000. Digestibility of native and exotic food plants eaten by juvenile desert tortoises. American Zoologist 40(6): 1050. (abstract)

Sources of information: enter text here

Question 1.4 Impact on genetic integrity

D Other Pub. Mat'l back

Identify impacts: No information available on hybridization, but there are two native Erodium species in California: E. macrophyllum on the south and central coast and the Channel Islands, and E. texanum on the southern coast and desert. Doubtful if these species hybridize. No record of any Erodium species hybridizing.

Rationale: Sources of information: Hickman, J. C. (ed.) 1993. The Jepson Manual, Higher Plants of California. University of California Press. Berkeley, CA **Question 2.1** Role of anthropogenic and natural disturbance in establishment C Rev'd, Sci. Pub'n back Describe role of disturbance: Needs natural or anthropogenic disturbance for establishment. Rationale: Coverage of Erodium was significantly greater within the disturbed areas of kangaroo rat territories than in the less-disturbed spaces between territories (1). Erodium declined in woodlands but increased in grasslands as grazing intensified (2). Biomass increased with nitrogen addition in the Mojave Desert (3). In British dune, grazing by rabbits reduces perennials and allows establishment of annuals such as Erodium (4). Found mainly in disturbed sites (see 3.1). Sources of information: 1. Schiffman 1994 2. Rosiere, R. E. 1987. An Evaluation of Grazing Intensity Influences on California USA Annual Range. Journal of Range Management 40(2): 160-165. 3. Brooks, M. L. 2003. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. Journal of Applied Ecology 40(2): 344-353 4. Coomes et al. 2002. Question 2.2 Local rate of spread with no management C Observational back Describe rate of spread: Can fluctuate up and down, but over all remains static. Rationale: enter text here Sources of information: DiTomaso, observational. **Ouestion 2.3** Recent trend in total area infested within state C Observational back Describe trend: Widely distributed and has been in the state for many years. Rationale: enter text here

Sources of information: DiTomaso, observational.

Question 2.4 Innate reproductive potential

B Other Pub. Mat'l back

Describe key reproductive characteristics: Summer or winter annual.

In Canada, emerged within 7-13 d of planting. Flowering occurred within 46-65 d of planting. Plants that emerged in late summer did not flower that season and survived as winter annuals. Seed production ranged from 2400-9900 seeds/plant (1). Seeds are impermeable at maturity but become permeable with dry storage and began

to germinate immediately when placed upon moist substrate after five years' storage (2). Able to grow well even with water stress (3).

Rationale: DiTomaso and Healy. 2006. Weeds of California. UC DANR Publ. #3488.

Sources of information: 1. Blackshaw R.E., and K. N. Harker K.N. 1998. Redstem Filaree (Erodium cicutarium) Development and Productivity Under Noncompetitive Conditions." Weed Technology 12: 590-594

- 2. Meisert, A. 2002. Physical dormancy in Geraniaceae seeds. Seed Science Research 12(2): 121-128.
- 3. Pelaez, D. V., C. A. Busso, O. R. Elia, D. E. Fresnillo Fedorenko, and O. A. Fernandez. 1995. Demography and growth of Medicago minima and Erodium cicutarium: Water stress effects. Journal of Arid Environments 30(1): 75-81...

Question 2.5 Potential for human-caused dispersal

B Other Pub. Mat'l back

Identify dispersal mechanisms: Can be dispersed by clinging to shoes and clothes of people, tire, and agricultural or maintenance equipment (1).

Rationale: enter text here

Sources of information: 1. DiTomaso, J., and E. Healy. in prep. Weeds of California and Other Western States.

Question 2.6 Potential for natural long-distance dispersal

B Other Pub. Mat'l back

Identify dispersal mechanisms: Mericarps dispserse by water, soil movement, and especially by clinging to the fur, feathers, or feet of animals (1). Most seed fall to soil surface.

Rationale: enter text here

Sources of information: 1. DiTomaso and Healy in prep

Question 2.7 Other regions invaded

C Rev'd, Sci. Pub'n back

Identify other regions: Native to Europe or the Mediterranean. Present in nearly every US state (1). Present in southern Africa (2). Present in rangeland of the semi-arid Caldenal region of Argentina (3).

Rationale:

Sources of information: 1. USDA, NRCS. 2004. The PLANTS Database, Version 3.5 (http://plants.usda.gov). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

- 2. Venter, H. J. T. and R. L. Verhoeven. 1990. The Genus Erodium in Southern Africa. South African Journal of Botany 56(1): 79-92.
- 3. Pelaez et al. 1995

Question 3.1 Ecological amplitude/Range

A Rev'd, Sci. Pub'n back

Describe ecological amplitude, identifying date of source information and approximate date of introduction to the state, if known: Present in most California counties (1). May have invaded from Baja California before the first California mission was established in 1769; i.e. disturbance by cattle grazing was not responsible for its establishment (2). Present in woodland and grassland (3), and desert dunes (4). Found on roadsides, pastures, fields, grasslands, rangelands, waste places, and other open disturbed sites throughout California to 2000m (5).

Rationale: enter text here

Sources of information: 1. USDA 2004

- 2. Mensing S., and R. Byrne. 1998. Pre-mission Invasion of Erodium cicutarium in California. Journal of Biogeography 25: 757-762
- 3. Rosiere, R. E. 1987. An Evaluation of Grazing Intensity Influences on California USA Annual Range. Journal of Range Management 40(2): 160-165
- 4. Brooks 2003
- 5. DiTomaso and Healy in prep.

Question 3.2 Distribution/Peak frequency

A Observational back

Describe distribution: Very common in valley and foothill grasslands.

Rationale: enter text here

Sources of information: DiTomaso, observational.

Worksheet A back

	B (4-5 pts)	
	4 pts	1 unknown
Resprouts readily when cut, grazed, or burned		No: 0 pt
Fragments easily and fragments can become established elsewhere		No: 0 pts
s quickly spreading vegetative structures (rhizomes, roots, etc.) that may root at nodes No: 0		No: 0 pt
Viable seed produced with <i>both</i> self-pollination and cross-pollination		Unknown: 0 pts
Seeds remain viable in soil for three or more years		No: 0 pts
Seed production sustained over 3 or more months within a population and	nually	No: 0 pt
Populations of this species produce seeds every year.		Yes: 1 pt
Dense infestations produce >1,000 viable seed per square meter		Yes: 2 pts
Reaches reproductive maturity in 2 years or less		Yes: 1 pt

Note any related traits: enter text here

Worksheet C - California Ecological Types (sensu Holland 1986)

back

Major Ecological Types	Minor Ecological Types	Code*
Marine Systems	marine systems	score
Freshwater and Estuarine	lakes, ponds, reservoirs	score
Aquatic Systems	rivers, streams, canals	score
	estuaries	score
Dunes	coastal	score
	desert	D. presen
	interior	score
Scrub and Chaparral	coastal bluff scrub	score
_	coastal scrub	score
	Sonoran desert scrub	score
	Mojavean desert scrub (incl. Joshua tree woodland)	score
	Great Basin scrub	score
	chenopod scrub	score
	montane dwarf scrub	score
	Upper Sonoran subshrub scrub	score
	chaparral	C. 5-20%
Grasslands, Vernal Pools,	coastal prairie	B. 21-50%
Meadows, and other Herb	valley and foothill grassland	A. >50%
Communities	Great Basin grassland	C. 5-20%
	vernal pool	score
	meadow and seep	score
	alkali playa	score
	pebble plain	score
Bog and Marsh	bog and fen	score
	marsh and swamp	score
Riparian and Bottomland	riparian forest	score
	riparian woodland	score
	riparian scrub (incl.desert washes)	score
Woodland	cismontane woodland	B. 21-50%
	piñon and juniper woodland	score
	Sonoran thorn woodland	score
Forest	broadleaved upland forest	score
	North Coast coniferous forest	score
	closed cone coniferous forest	score
	lower montane coniferous forest	C. 5-20%
	upper montane coniferous forest	score
	subalpine coniferous forest	score
Alpine Habitats	alpine boulder and rock field	score
	alpine dwarf scrub	score

^{*} A. means >50% of type occurrences are invaded; B means >20% to 50%; C. means >5% to 20%; D. means present but ≤5%; U. means unknown (unable to estimate percentage of occurrences invaded).