Plant Assessment Form
More Eucalyptus globulus resources
Eucalyptus globulus
Synonyms: Eucalyptus maidenii subsp. globulus (Labill.) J.B.Kirkp.
Common Names: blue gum; Tasmanian blue gum; blue gum Eucalyptus; common Eucalyptus; Southern blue gum; Victorian blue gum
Evaluated on: original 3/2004, re-assessed 3/14; finalized 3/2015
List committee review date: 15/08/2017
Re-evaluation date: 03/13/2015
Evaluator(s)
Kristina Wolf, PhD Candidate
UC Davis Dept. of Plant Sciences
PES 1210 Mail Stop 1, 1 Shields Ave., Davis, CA 95616
kmwolf@ucdavis.edu
Joseph DiTomaso, Cooperative Extension Weed Specialist
UC Davis Dept. of Plant Sciences
PES 1210 Mail Stop 1, 1 Shields Ave., Davis, CA 95616
jmditomaso@ucdavis.edu
List committee members
Joe DiTomaso (UC Davis)
Dean Kelch (CDFA)
Ramona Robison (State Parks)
Elizabeth Brusati (Cal-IPC)
Doug Johnson (Cal-IPC)
Alison Forrestel (NPS)
Peter Warner (consulting botanist)
General Comments
<p>A pdf file of this information is available at <a title="eucalyptus page" href="../../../ip/inventory/eucalyptus2.php.">http://www.cal-ipc.org/ip/inventory/eucalyptus2.php. </a><br /><br /></p>
<p>The document is an expert-reviewed assessment of the ecological impacts of<em> Eucalyptus globulus</em> in California. Of some 1,800 non-native plants that grow outside of cultivation in California, Cal-IPC has rated approximately 200 as Limited, Moderate, or High level invasive plants based on severity of impact, ability to spread, and extent. (For more information, see <a title="inventory" href="../../../ip/inventory">www.cal-ipc.org/ip/inventory</a>.) Cal-IPC ratings are designed to inform those managing lands for ecological values (such as native wildlife habitat) about the potential impacts of a given plant. Ratings are informative, not prescriptive; they are generalized, not site-specific. Ratings do not determine the overall value of particular plants in particular places, and the term “invasive” should not be construed as a universal condemnation.</p>
<p><br /><em>Eucalyptus globulus</em>, Tasmanian blue gum, was last assessed by Cal-IPC in 2006 as part of a major initiative to update and document assessments for some 200 plant species. In 2014, Cal-IPC reassessed E. globulus. This new assessment revises scores for some criteria and results in a change in overall score from “Moderate” to “Limited.” To large degree this change is due to evaluating<em> E. globulus</em> across the entire state, rather than focusing on coastal areas where it is most prone to spreading.</p>
<p><br />Blue gum eucalyptus is unique among naturalized non-native plant species in California. Its rich cultural history is documented in detail by Jared Farmer in <em>Trees in Paradise: A California History</em> (Norton, 2013). While most plants listed by Cal-IPC have spread into wildlands on their own, blue gum was actively planted in natural areas for timber, windbreaks and aesthetics. The stands existing today are those that were planted in an earlier time. <em>E. globulus</em> were most typically planted in grasslands, yet their most logical native analog habitat is oak or bay laurel woodland; this assessment aims to assess the most relevant comparison for each criterion.</p>
<p><br />Some stands were planted so densely that few other plants grow within the stand, while less dense stands often contain more plant diversity. Some stands are regenerating and expanding in size, while others in less favorable conditions are not. Some stands are within areas now being managed primarily for ecological values, others are not. Where stands do occur in areas being managed for ecological values, it makes clear sense to assess their ecological impact as an invasive plant. Plantations that are not regenerating or expanding are not considered “invasive” in the customary use of the term. Management decisions for stands in urban areas will necessarily involve consideration of a range of factors, such as recreational and aesthetic values and the trees’ much-debated role in wildfire risk. For these stands, the information provided in this assessment can help assess impacts on native habitat, which may also be a factor in management decisions.</p>
|
|
Overall Score ?
Plant scoring matrix
Based on letter scores from Sections 1 through 3 below
Impact | Invasiveness | Distribution | | |
A | A B | Any | High | No Alert |
A | C D | Any | Moderate | Alert |
B | A B | A B | Moderate | No Alert |
B | A B | C D | Moderate | Alert |
B | C D | Any | Limited | No Alert |
C | A | A B | Moderate | No Alert |
C | A | C D | Limited | No Alert |
C | B | A | Moderate | No Alert |
C | B | B D | Limited | No Alert |
C | C | Any | Limited | No Alert |
D | Any | Any | Not Listed | No Alert |
Limited
|
Alert Status ?
Plant scoring matrix
Based on letter scores from Sections 1 through 3 below
Impact | Invasiveness | Distribution | Alert |
A | A or B | C or D | Alert |
B | A or B | C or D | Alert |
No Alert
|
Documentation ?
The total documentation score is the average
of Documentation scores given in Table 2.
Reviewed Scientific Publication | 4 points |
Other Published Material | 3 points |
Observational | 2 points |
Anecdotal | 1 points |
Unknown or No Information | 0 points |
3 out of 5
|
|
|
Score |
Documentation |
|
1.1 |
?Impact on abiotic ecosystem processes
Consider the impact on the natural range and variation of abiotic ecosystem processes and system-wide parameters in ways that significantly diminish the ability of native species to survive and reproduce. Alterations that determine the types of communities that can exist in a given area are of greatest concern. Examples of abiotic processes include:
- fire occurrence, frequency, and intensity;
- geomorphological changes such as erosion and sedimentation rates;
- hydrological regimes, including soil water table;
- nutrient and mineral dynamics, including salinity, alkalinity, and pH;
- light availability (e.g. when an aquatic invader covers an entire water body that would otherwise be open).
Select the one letter below that best describes this species' most severe impact on an abiotic ecosystem process:
A. Severe, possibly irreversible, alteration or disruption of an ecosystem process.
B. Moderate alteration of an ecosystem process.
C. Minor alteration of an ecosystem process.
D. Negligible perceived impact on an ecosystem process.
U. Unknown.
|
B. Moderate |
Reviewed Scientific Publication |
Impact?
Section 1 Scoring Matrix |
Q 1.1 | Q 1.2 | Q 1.3 | Q 1.4 | Score |
A | A | Any | Any | A |
A | B | A,B | Any | A |
A | B | C,D,U | Any | B |
A | C,D,U | Any | Any | B |
B | A | A | Any | A |
B | A | B | A | A |
B | A | B,C | B-D,U | B |
B | A | C,D,U | A | A |
B | A | C,D,U | B-D,U | B |
B | B | A | A | A |
B | C,D,U | A | A | B |
B | B-D | A | B-D,U | B |
B | B-D | B-D,U | Any | B |
B | D,U | C,D,U | A-B | B |
B | D,U | C,D,U | C,D,U | C |
C-D,U | A | A | Any | A |
C | B | A | Any | B |
C | A,B | B-D,U | Any | B |
C | C,D,U | Any | Any | C |
D | A,B | B | Any | B |
D | A,B | C,D,U | Any | C |
D | C | Any | Any | C |
D | D,U | Any | Any | D |
U | A | B,C | Any | B |
U | B,C | A,B | Any | B |
U | B,C | C,D,U | Any | C |
U | U | Any | Any | U |
Four-part score
BBBD
Total Score
B
|
1.2 |
?Impact on plant community
Consider the cumulative ecological impact of this species to the plant communities it invades. Give more weight to changes in plant composition, structure, and interactions that involve rare or keystone species or rare community types. Examples of severe impacts include:
- formation of stands dominated (>75% cover) by the species;
- occlusion (>75% cover) of a native canopy, including a water surface, that eliminates or degrades layers below;
- significant reduction or extirpation of populations of one or more native species.
Examples of impacts usually less than severe include:
- reduction in propagule dispersal, seedling recruitment, or survivorship of native species;
- creation of a new structural layer, including substantial thatch or litter, without elimination or replacement of a pre-existing layer;
- change in density or depth of a structural layer;
- change in horizontal distribution patterns or fragmentation of a native community;
- creation of a vector or intermediate host of pests or pathogens that infect native plant species.
Select the one letter below that best describes this species' impact on community composition, structure and interactions:
A. Severe alteration of plant community composition, structure, or interactions.
B. Moderate alteration of plant community composition.
C. Minor alteration of community composition.
D. Negligible impact known; causes no perceivable change in community composition, structure, or interactions.
U. Unknown.
|
B. Moderate |
Reviewed Scientific Publication |
1.3 |
?Impact on higher trophic levels
Consider the cumulative impact of this species on the animals, fungi, microbes, and other organisms in the communities that it invades. Although a non-native species may provide resources for one or a few native species (e.g. by providing food, nesting sites, etc.), the ranking should be based on the species' net impact on all native species. Give more weight to changes in composition and interactions involving rare or keystone species or rare community types.
Examples of severe impacts include:
- extirpation or endangerment of an existing native species or population;
- elimination or significant reduction in native species' nesting or foraging sites, cover, or other critical resources (i.e., native species habitat), including migratory corridors.
Examples of impacts that are usually less than severe include:
- minor reduction in nesting or foraging sites, cover, etc. for native animals;
- minor reduction in habitat connectivity or migratory corridors;
- interference with native pollinators;
- injurious components, such as awns or spines that damage the mouth and gut of native wildlife species, or production of anti-digestive or acutely toxic chemical that can poison native wildlife species.
Select the one letter below that best describes this species' impact on community composition and interactions:
A. Severe alteration of higher trophic populations, communities, or interactions.
B. Moderate alteration of higher trophic level populations, communities, or interactions.
C. Minor alteration of higher trophic level populations, communities or interactions.
D. Negligible impact; causes no perceivable change in higher trophic level populations, communities, or interactions.
E. Unknown.
|
B. Moderate |
Reviewed Scientific Publication |
1.4 |
?Impact on genetic integrity
Consider whether the species can hybridize with and influence the proportion of individuals with non-native genes within populations of native species. Mechanisms and possible outcomes include:
- production of fertile or sterile hybrids that can outcompete the native species;
- production of sterile hybrids that lower the reproductive output of the native species.
Select the one letter below that best describes this species' impact on genetic integrity:
A. Severe (high proportion of individuals).
B. Moderate (medium proportion of individuals).
C. Minor (low proportion of individuals).
D. No known hybridization.
U. Unknown.
|
D. None |
Other Published Material |
|
2.1 |
?Role of anthropogenic and natural disturbance in establishment
Assess dependence on disturbance, both human and natural, for establishment of this species in wildlands. Examples of anthropogenic disturbances include:
- grazing, browsing, and rooting by domestic livestock and feral animals;
- altered fire regimes, including fire suppression;
- cultivation;
- silvicultural practices;
- altered hydrology due to dams, diversions, irrigation, etc.;
- roads and trails;
- construction;
- nutrient loading from fertilizers, runoff, etc.
Examples of natural disturbance include:
- wildfire;
- floods;
- landslides;
- windthrow;
- native animal activities such as burrowing, grazing, or browsing.
Select the first letter in the sequence below that describes the ability of this species to invade wildlands:
A. Severe invasive potential: this species can establish independent of any known natural or anthropogenic disturbance.
B. Moderate invasive potential: this species may occasionally establish in undisturbed areas but can readily establish in areas with natural disturbances.
C. Low invasive potential: this species requires anthropogenic disturbance to establish.
D. No perceptible invasive potential: this species does not establish in wildlands (though it may persist from former cultivation).
U. Unknown.
|
C. Minor |
Other Published Material |
Invasiveness?
Section 2 Scoring Matrix |
Total points | Score |
17-21 | A |
11-16 | B |
5-10 | C |
0-4 | D |
More than two U's | U |
Total Points
8
Total Score
C
|
2.2 |
?Local rate of spread with no management
Assess rate of spread in existing localized infestations where the proportion of available habitat invaded is still small when no management measures are implemented.
Select the one letter below that best describes the rate of spread:
A. Increases rapidly (doubling in <10 years)
B. Increases, but less rapidly
C. Stable
D. Declining
U. Unknown
|
B. Increases less rapidly |
Reviewed Scientific Publication |
2.3 |
?Recent trend in total area infested within state
Assess the overall trend in the total area infested by this species statewide. Include current management efforts in this assessment and note them.
Select the one letter below that best describes the current trend:
A. Increasing rapidly (doubling in total range statewide in <10 years)
B. Increasing, but less rapidly
C. Stable
D. Declining
U. Unknown
|
C. Stable |
Observational |
2.4 |
?Innate reproductive potential (see Worksheet A)
Assess the innate reproductive potential of this species. Worksheet A is provided for computing the score.
|
C. Low |
Other Published Material |
2.5 |
?Potential for human-caused dispersal
Assess whether this species is currently spread: or has high potential to be spread: by direct or indirect human activity. Such activity may enable the species to overcome natural barriers to dispersal that would not be crossed otherwise, or it may simply increase the natural dispersal of the species. Possible mechanisms for dispersal include:
- commercial sales for use in agriculture, ornamental horticulture, or aquariums;
- use as forage, erosion control, or revegetation;
- presence as a contaminant (seeds or propagules) in bulk seed, hay, feed, soil, packing materials, etc.;
- spread along transportation corridors such as highways, railroads, trails, or canals;
- transport on boats or boat trailers.
Select the one letter below that best describes human-caused dispersal and spread:
A. High: there are numerous opportunities for dispersal to new areas.
B. Moderate: human dispersal occurs, but not at a high level.
C. Low: human dispersal is infrequent or inefficient.
D. Does not occur.
U. Unknown.
|
C. Low |
Observational |
2.6 |
? Potential for natural long-distance dispersal
We have chosen 1 km as the threshold of "long-distance." Assess whether this species is frequently spread, or has high potential to be spread, by animals or abiotic mechanisms that can move seed, roots, stems, or other propagules this far. The following are examples of such natural long-distance dispersal mechanisms:
- the species' fruit or seed is commonly consumed by birds or other animals that travel long distances;
- the species' fruits or seeds are sticky or burred and cling to feathers or hair of animals;
- the species has buoyant fruits, seeds, or other propagules that are dispersed by flowing water;
- the species has light propagules that promote long-distance wind dispersal;
- The species, or parts of it, can detach and disperse seeds as they are blown long distances (e.g., tumbleweed).
Select the one letter below that best describes natural long-distance dispersal and spread:
A. Frequent long-distance dispersal by animals or abiotic mechanisms.
B. Occasional long-distance dispersal by animals or abiotic mechanisms.
C. Rare dispersal more than 1 km by animals or abiotic mechanisms.
D. No dispersal of more than 1 km by animals or abiotic mechanisms.
U. Unknown.
|
C. Rare |
Reviewed Scientific Publication |
2.7 |
?Other regions invaded
Assess whether this species has invaded ecological types in other states or countries outside its native range that are analogous to ecological types not yet invaded in your state (see Worksheets B, C, and D for California, Arizona, and Nevada, respectively, in Part IV for lists of ecological types). This information is useful in predicting the likelihood of further spread within your state.
Select the one letter below that best describes the species' invasiveness in other states or countries, outside its native range.
A. This species has invaded 3 or more ecological types elsewhere that exist in your state and are as yet not invaded by this species (e.g. it has invaded Mediterranean grasslands, savanna, and maquis in southern Europe, which are analogous to California grasslands, savanna, and chaparral, respectively).
B. Invades 1 or 2 ecological types that exist but are not yet invaded in your state.
C. Invades elsewhere but only in ecological types that it has already invaded in the state.
D. Not known as an escape anywhere else.
U. Unknown.
|
C. Already invaded |
Other Published Material |
|
3.1 |
?Ecological amplitude/Range (see Worksheet C)
Refer to Worksheet C and select the one letter below that indicates the number of different ecological types that this species invades.
A. Widespread: the species invades at least three major types or at least six minor types.
B. Moderate: the species invades two major types or five minor types.
C. Limited: the species invades only one major type and two to four minor types.
D. Narrow: the species invades only one minor type.
U. Unknown.
|
A. Widespread |
Observational |
Distribution?
Section 3 Scoring Matrix |
Q 3.1 | Q 3.2 | Score |
A | A, B | A |
A | C,D,U | B |
B | A | A |
B | B,C | B |
B | D | C |
C | A,B | B |
C | C,D | C |
D | A | B |
D | B,C | C |
D | D | D |
A,B | U | C |
C,D | U | D |
U | U | U |
Total Score
B
|
3.2 |
?Distribution/Peak frequency (see Worksheet C)
To assess distribution, record the letter that corresponds to the highest percent infested score entered in Worksheet C for any ecological type.
|
C. Low |
Observational |
Scores are explained in the "Criteria for Categorizing Invasive Non-Native Plants that Threaten Wildlands".
Section 1: Impact |
Question 1.1 Impact on abiotic ecosystem processes?
Consider the impact on the natural range and variation of abiotic ecosystem processes and system-wide parameters in ways that significantly diminish the ability of native species to survive and reproduce. Alterations that determine the types of communities that can exist in a given area are of greatest concern. Examples of abiotic processes include:
- fire occurrence, frequency, and intensity;
- geomorphological changes such as erosion and sedimentation rates;
- hydrological regimes, including soil water table;
- nutrient and mineral dynamics, including salinity, alkalinity, and pH;
- light availability (e.g. when an aquatic invader covers an entire water body that would otherwise be open).
Select the one letter below that best describes this species' most severe impact on an abiotic ecosystem process:
A. Severe, possibly irreversible, alteration or disruption of an ecosystem process.
B. Moderate alteration of an ecosystem process.
C. Minor alteration of an ecosystem process.
D. Negligible perceived impact on an ecosystem process.
U. Unknown.
|
B
Reviewed Scientific Publication
|
Identify ecosystem processes impacted:
<p><em>E. globulus</em> alters fire regime and groundwater availability. (Potential for allelopathy was examined but is not included.) These impacts can be significant in circumstances where blue gum were planted at high density and growing conditions are favorable for the species, and less significant in other places.</p>
<p><br /><strong>Alteration of fire regime:</strong><br />In comparing wildfire parameters in blue gum stands versus native oak woodland (a comparable native habitat structure) fuel loads are significantly greater. E. globulus stands can accumulate significantly higher fuel loads than native woodlands. One study found fuel loads of 31 tons/acre in E. globulus stands as compared to 19 tons/acre in California bay forest and 12 tons/acre in coast live oak woodlands (National Park Service 2006). (Factors of ignition and relative flammability are not considered here.)</p>
<p><br />Wildfire in grasslands is typically more frequent and less intense than wildfire in heavily wooded areas (whether native or non-native). Higher fire intensity can impact soils as well as seed mortality in the soil seed bank.</p>
<p><br /><strong>Alteration of groundwater availability:</strong><br />The high water consumption of E. globulus is well known (Rejmanek & Richardson 2011) and eucalyptus species have been used by development agencies to drain swampy areas in efforts to reduce malaria (see for instance the Wikipedia entry for Eucalyptus). E. globulus and E. camuldensis (red gum) are used in environmental remediation projects. An example of this is PG&E’s 30 acre plantation in Lake County, California. At that site the trees are used to provide hydraulic control of groundwater beneath a landfill. The object of this remediation is to suppress groundwater and keep it from contacting geothermal wastes placed in the landfill (Deutsch 2015).</p>
<p><br />Lateral roots can extend 30 m or more from the trunk, and in deep soils with high water tables, roots can penetrate to depths of 14 m (DiTomaso & Healy 2007). According to DiTomaso & Healy (2007) E. globulus are able to withstand prolonged dry summers by tapping into deep water reservoirs as well as by economizing water use through stomatal control. Their far-reaching root systems can extract water from the soil at even higher soil moisture tensions than most mesophytic plants (Pryor 1976, Florence 1996). The National Park Service is beginning to study groundwater response to eucalyptus removal, for instance on the Channel Islands (Power 2014).</p>
<p><br />In coastal zones, fog drip under blue gum stands can be substantial, which accounts for the ability of coastal stands to regenerate (Yost 2014). A study in San Francisco found fog drip from eucalyptus drip can add as much as 42 cm of water during a single summer (Clarke et. al. 2008). This amount is comparable to annual rainfall and in such areas fog drip may significantly mitigate groundwater consumption.</p>
Sources of information:
<p>See references within text.</p>
|
Question 1.2 Impact on plant community composition, structure, and interactions?
Consider the cumulative ecological impact of this species to the plant communities it invades. Give more weight to changes in plant composition, structure, and interactions that involve rare or keystone species or rare community types. Examples of severe impacts include:
- formation of stands dominated (>75% cover) by the species;
- occlusion (>75% cover) of a native canopy, including a water surface, that eliminates or degrades layers below;
- significant reduction or extirpation of populations of one or more native species.
Examples of impacts usually less than severe include:
- reduction in propagule dispersal, seedling recruitment, or survivorship of native species;
- creation of a new structural layer, including substantial thatch or litter, without elimination or replacement of a pre-existing layer;
- change in density or depth of a structural layer;
- change in horizontal distribution patterns or fragmentation of a native community;
- creation of a vector or intermediate host of pests or pathogens that infect native plant species.
Select the one letter below that best describes this species' impact on community composition, structure and interactions:
A. Severe alteration of plant community composition, structure, or interactions.
B. Moderate alteration of plant community composition.
C. Minor alteration of community composition.
D. Negligible impact known; causes no perceivable change in community composition, structure, or interactions.
U. Unknown.
|
B
Reviewed Scientific Publication
|
Identify type of impact or alteration:
<p><em>E. globulus</em> stands displace native plant communities. Plant communities can be severely altered in circumstances where blue gum was planted at high density and growing conditions are favorable. Plant communities in other places can be significantly less impacted.<br /><br />Conditions are most favorable for blue gum growth and regeneration along the coast in northern and central California (Ritter and Yost 2012). Capacity for regeneration is based on environmental conditions; areas with reliable year-round moisture, such as along riparian corridors and along the coast from Monterey Bay north where summer fog drip provides seedlings with some moisture, are most likely to support naturally reproducing eucalyptus populations (Yost 2014). Juvenile foliage is seldom browsed by livestock or wildlife, aiding seedling survival (Skolmen and Ledig 1990).</p>
<p><br /><em>E. globulus</em> stands can form near monocultures in areas where they were planted at high densities (Griffiths & Villablanca 2013). On Angel Island in San Francisco Bay, native trees were only found in eucalyptus plantings where the blue gums had been widely spaced, and these natives were “not vigorous” (McBride, Sugihara, and Amme 1988).</p>
<p><br />Reports of plant diversity within <em>E. globulus</em> stands vary, reflecting the range of conditions, including original planting density, suitability of the microclimate for eucalyptus growth and regeneration, composition of native seed bank, size of the stand and diversity of the surrounding vegetation. Some studies report depauperate plant communities (Esser 1993, DiTomaso & Healy 2007, Bean & Russo 2014) limited by shading and a thick litter layer, while other studies report some native plant species being supported in the understory (LSA Associates 2009, San Francisco Recreation and Park Department 2006).</p>
Sources of information:
<p>See references within text.</p>
|
Question 1.3 Impact on higher trophic levels?
Consider the cumulative impact of this species on the animals, fungi, microbes, and other organisms in the communities that it invades. Although a non-native species may provide resources for one or a few native species (e.g. by providing food, nesting sites, etc.), the ranking should be based on the species' net impact on all native species. Give more weight to changes in composition and interactions involving rare or keystone species or rare community types.
Examples of severe impacts include:
- extirpation or endangerment of an existing native species or population;
- elimination or significant reduction in native species' nesting or foraging sites, cover, or other critical resources (i.e., native species habitat), including migratory corridors.
Examples of impacts that are usually less than severe include:
- minor reduction in nesting or foraging sites, cover, etc. for native animals;
- minor reduction in habitat connectivity or migratory corridors;
- interference with native pollinators;
- injurious components, such as awns or spines that damage the mouth and gut of native wildlife species, or production of anti-digestive or acutely toxic chemical that can poison native wildlife species.
Select the one letter below that best describes this species' impact on community composition and interactions:
A. Severe alteration of higher trophic populations, communities, or interactions.
B. Moderate alteration of higher trophic level populations, communities, or interactions.
C. Minor alteration of higher trophic level populations, communities or interactions.
D. Negligible impact; causes no perceivable change in higher trophic level populations, communities, or interactions.
E. Unknown.
|
B
Reviewed Scientific Publication
|
Identify type of impact or alteration:
<p><strong>E. globulus</strong> alters habitat for birds. Effects on terrestrial vertebrates and arthropods were reviewed but are not included in this assessment. Some blue gum stands provide habitat for monarch butterflies.</p>
<p><br /><strong>Impacts to birds</strong><br />Many of the breeding bird species that are most representative of oak and riparian habitats make little or no use of eucalyptus. Decay-resistant wood offers limited nesting opportunities for woodpeckers and birds that excavate their own holes. Birds that glean insects from foliage are also present at notably lower densities than in native oak woodlands (Suddjian 2004, Williams 2002).</p>
<p><br />Eucalyptus stands do provide nesting habitat for large roosting birds such as herons, egrets, and cormorants and raptors such as red-shouldered and red-tailed hawks (Suddjian 2004, LSA Associates 2009). They also provide a nectar source for bees and hummingbirds (Rejmanek & Richardson 2011).</p>
<p><br />Depending on the abundance and health of grassland and oak woodland near blue gum stands, these stands may be considered to be damaging or complementing native habitat.</p>
<p><br /><strong>Monarch butterfly habitat</strong><br />Some eucalyptus stands provide overwintering sites for Monarch butterflies, along with native trees such as coast redwoods, Monterey pine and Monterey cypress (Griffiths & Villablanca 2013).</p>
Sources of information:
<p>See references within text.</p>
|
Question 1.4 Impact on genetic integrity?
Consider whether the species can hybridize with and influence the proportion of individuals with non-native genes within populations of native species. Mechanisms and possible outcomes include:
- production of fertile or sterile hybrids that can outcompete the native species;
- production of sterile hybrids that lower the reproductive output of the native species.
Select the one letter below that best describes this species' impact on genetic integrity:
A. Severe (high proportion of individuals).
B. Moderate (medium proportion of individuals).
C. Minor (low proportion of individuals).
D. No known hybridization.
U. Unknown.
|
D
Other Published Material
|
<p>No congeners native to the United States; no hybridization between non-native Eucalyptus spp. and native plant species in California.</p>
Sources of information:
<p>Baldwin et al. 2012, Calflora 2014</p>
|
Section 2: Invasiveness |
Question 2.1 Role of anthropogenic and natural disturbance in establishment?
Assess this species' dependence on disturbance: both human and natural: for establishment in wildlands. Examples of anthropogenic disturbances include:
- grazing, browsing, and rooting by domestic livestock and feral animals;
- altered fire regimes, including fire suppression;
- cultivation;
- silvicultural practices;
- altered hydrology due to dams, diversions, irrigation, etc.;
- roads and trails;
- construction;
- nutrient loading from fertilizers, runoff, etc.
Examples of natural disturbance include:
- wildfire;
- floods;
- landslides;
- windthrow;
- native animal activities such as burrowing, grazing, or browsing.
Select the first letter in the sequence below that describes the ability of this species to invade wildlands:
A. Severe invasive potential: this species can establish independent of any known natural or anthropogenic disturbance.
B. Moderate invasive potential: this species may occasionally establish in undisturbed areas but can readily establish in areas with natural disturbances.
C. Low invasive potential: this species requires anthropogenic disturbance to establish.
D. No perceptible invasive potential: this species does not establish in wildlands (though it may persist from former cultivation).
U. Unknown.
|
B
Reviewed Scientific Publication
|
Describe role of disturbance:
<p><em>E. globulus</em> was introduced to California in 1856 (Esser 1993) and is now naturalized in parts of California (Esser 1993, Ritter & Yost 2009). Purposeful cultivation was the primary mode of establishment (Skolmen & Ledig 1990, Esser 1993, HEAR 2007, LSA Associates 2009, Baldwin et al. 2012). E. globulus was planted on about 40,000 acres in California, extending from Humboldt County in the north to San Diego County in the south, with best growth in the coastal fog belt (Skolmen & Ledig 1990).</p>
<p>New populations independent of planting are rarely seen in California. Spread is typically limited to expansion along the periphery of an existing population. While eucalyptus bears abundant seed, it does not generally find appropriate conditions for germination (Tyrell 1999). Seeds germinate best on bare mineral soil so germination within dense forests is difficult (Bean & Russo 2014).</p>
Sources of information:
<p>See references within text.</p>
|
Question 2.2 Local rate of spread with no management?
Assess this species' rate of spread in existing localized infestations where the proportion of available habitat invaded is still small when no management measures are implemented.
Select the one letter below that best describes the rate of spread:
A. Increases rapidly (doubling in <10 years)
B. Increases, but less rapidly
C. Stable
D. Declining
U. Unknown
|
B
Reviewed Scientific Publication
|
Describe rate of spread:
<p>Though not all <em>E. globulus</em> stands are expanding, those in moist coastal habitats often expand at a significant rate. New populations are rare; spread is almost entirely along the periphery of existing stands.</p>
<p>Most naturalized stands of <em>E. globulus</em> are present along the coast in northern and central California (Ritter & Yost 2012). Aerial photographs show a 50-400% increase in eucalyptus stand size between 1930 and 2001 across six sites in coastal California (Van Dyke 2004). On Angel Island, blue gum “invaded areas adjacent to all sites where it was originally planted,” resulting in an expansion from 24 acres to 86 acres, a 360% expansion, over a century (McBride, Sugihara and Amme 1988). Potential spread rate has been estimated at 10-20 feet per year under favorable conditions (Bean & Russo 2014).</p>
<p><br />Some studies show that this is not the case with all populations. An assessment of changes in cover over a 58-year period at three regional parks in the East Bay hills indicates a decline in eucalyptus cover at all three locations (Russell and McBride 2003), though it is unclear how management activities may have affected stand size in these locations.</p>
<p><br />California State Parks personnel submitted the following recent reports:</p>
<ul>
<li>Tim Hyland (2014) in the Santa Cruz District reports that nine coastal units have E. globulus patches that have moved into riparian, coastal prairie, and coastal scrub habitats. Two units have E. globulus patches that exist in forested settings and show no signs of reproduction.</li>
</ul>
<ul>
<li>Vince Cincero (2014) in the San Luis Obispo Coast District referred to a 1990 report compiled by Susan Bicknell of Humboldt State University on eucalyptus at Montana de Oro State Park in Los Osos. The report describes an original plantation established in 1907/08, with the earliest aerial photos from 1949 showing 7 species of eucalyptus covering 119 acres. Forty years later in 1989, the grove had expanded 52% to 181 acres, of which E. globulus covered 108 acres (the original portion comprising blue gum is unknown).</li>
</ul>
<ul>
<li>Suzanne Goode (2014) in the Angeles District reports that: at Mulholland Highway and Pacific Coast Highway, E. globulus is spreading upslope; at Nicholas Flats Natural Preserve, E. globulus (and possibly other eucalyptus species) are spreading from an original plantation homestead;and at the Will Rogers State Historic Park E. globulus continues to spread from plantings into the hillsides.</li>
</ul>
<ul>
<li>Michelle Forys (2014) in the North Coast Redwoods District reports that the few planted clumps of E. globulus located on district property are actively controlled to stop spread beyond the historical planted area. Additionally, she has observed a planting on the west side of along Highway 101 between Arcata and Eureka spreading across to the east side of the highway.</li>
</ul>
Sources of information:
<p>See references within text.</p>
<p> </p>
|
Question 2.3 Recent trend in total area infested within state?
Assess the overall trend in the total area infested by this species statewide. Include current management efforts in this assessment and note them.
Select the one letter below that best describes the current trend:
A. Increasing rapidly (doubling in total range statewide in <10 years)
B. Increasing, but less rapidly
C. Stable
D. Declining
U. Unknown
|
C
Observational
|
Describe trend:
<p>Some stands of E. globulus along the California coast are regenerating and expanding, while others are stable or even shrinking. CalWeedMapper (2014) shows that E. globulus is thought (by local land managers) to be spreading in about 47% of the USGS quadrangles where it is present in the state, and stable in the rest (decreases are not documented in the system, other than through active management).</p>
Sources of information:
<p>See references within text.</p>
|
Question 2.4 Innate reproductive potential?
Assess the innate reproductive potential of this species. Worksheet A is provided for computing the score.
|
C
Other Published Material
|
Describe key reproductive characteristics:
<p style="margin: 0in; margin-bottom: .0001pt;"><strong><span style="font-size: 8.5pt; font-family: Verdana, sans-serif;">1. Reaches reproductive maturity in 2 years or less: No</span></strong></p>
<p style="margin: 0in 0in 0.0001pt;"><span style="font-size: 8.5pt; font-family: Verdana, sans-serif;">Most sources estimate trees usually begin to produce seeds at 4 to 5 years and yield heavy seed crops in most locations at 3- to 5-year intervals (Skolmen & Ledig 1990, HEAR 2007). Metcalf (1924) stated that flowers and fruits could be found on sprouts only two or three years old, although not in great quantities.</span></p>
<p style="margin: 0in 0in 0.0001pt;"><strong><span style="font-size: 8.5pt; font-family: Verdana, sans-serif;">2. Dense infestations produce >1,000 viable seed per square meter: Unknown<span class="apple-converted-space"> </span></span></strong></p>
<p style="margin: 0in 0in 0.0001pt;"><span style="font-size: 8.5pt; font-family: Verdana, sans-serif;"> Sources indicate prolific seed production, but viable seeds produced per square meter are not given. There are 18 to 320 seeds per gram (500 to 9,100/oz) of seeds and chaff, or about 460 clean seeds per gram (13,000/oz) (Skolmen & Ledig 1990). Germination rates are typically very low: a 1% germination rate is good, given the more usual 0.1% germination success rate (Bean & Russo 2014). This does not indicate the amount of viable seed, as germination can be limited by other factors as well (e.g., allelopathy, thick litter layer, moisture, etc).<br /> <strong>3. Populations of this species produce seeds every year: unknown, assume no</strong><br /> Skolmen & Ledig (1990) indicate that E. globulus yields heavy seed crops in most locations at 3- to 5-year intervals. This does not indicate whether seed is produced every year and only heavily at several year intervals, or whether seed is produced only at 3- to 5-year intervals.<br /> <strong>4. Seed production sustained over 3 or more months within a population annually: Yes<span class="apple-converted-space"> </span><br /> </strong>Blue gum eucalyptus in California flowers from November to April during the wet season. The fruit (a distinctive top-shaped woody capsule 15 mm long and 2 cm in diameter) ripens in October to March, about 11 months after flowering (Skolmen & Ledig 1990).<br /> <strong>5. Seeds remain viable in soil for three or more years: No<span class="apple-converted-space"> </span><br /> </strong>Germination occurs readily (within 26 days) after seeds are released if conditions are suitable (Skolmen & Ledig 1990). When stored, seeds can remain viable for several years, but in field conditions, viable seed banks are not expected to be maintained beyond a year (Rejmanek & Richardson 2011).<br /> <strong>6. Viable seed produced with both self-pollination and cross-pollination: No<span class="apple-converted-space"> </span><br /> </strong>When the cap covering the reproductive organs (the operculum) is shed, the anthers have mature pollen, but the stigma does not become receptive until some days later. This sequence impedes self-pollination of an individual flower. Flowers are pollinated by insects, hummingbirds, and other pollen and nectar feeders. There is no evidence that wind plays anything but a minor role in eucalypt pollination. The flowers of eucalypts are not highly specialized for insect pollination (HEAR 2007).<br /> <strong>7. Has quickly spreading vegetative structures (rhizomes, roots, etc.) that may root at nodes: No<br /> </strong>Blue gum eucalyptus can sprout from the bole, from stumps of all sizes and ages, from the lignotuber, and from the roots. The lignotuber can live for many years in the soil after stems die back (Esser 1993). This contributes to re-growth, but not spatial spread of the plant. One professional land manager reports that stand spread may arise from root sprouts in addition to seed sprouts (Heath 2014), but this has not been confirmed.<br /> <strong>8. Fragments easily and fragments can become established elsewhere: No<br /> </strong>No evidence found.<br /> <strong>9. Resprouts readily when cut, grazed, or burned: Yes<span class="apple-converted-space"> </span><br /> </strong>Blue gum coppices readily from stumps of all sizes and ages when the tree is damaged. If the tree is cut down, lignotubers become active and each bud produce a shoot bearing foliage. Such shoots are commonly known as "sucker growth" or coppice shoots, and a large number are usually formed. E. globulus resprouts after being burned (Skolmen & Ledig 1990, Bean & Russo 2014).</span></p>
Sources of information:
<p>See references in text.</p>
|
Question 2.5 Potential for human-caused dispersal?
Assess whether this species is currently spread: or has high potential to be spread: by direct or indirect human activity. Such activity may enable the species to overcome natural barriers to dispersal that would not be crossed otherwise, or it may simply increase the natural dispersal of the species. Possible mechanisms for dispersal include:
- commercial sales for use in agriculture, ornamental horticulture, or aquariums;
- use as forage, erosion control, or revegetation;
- presence as a contaminant (seeds or propagules) in bulk seed, hay, feed, soil, packing materials, etc.;
- spread along transportation corridors such as highways, railroads, trails, or canals;
- transport on boats or boat trailers.
Select the one letter below that best describes human-caused dispersal and spread:
A. High: there are numerous opportunities for dispersal to new areas.
B. Moderate: human dispersal occurs, but not at a high level.
C. Low: human dispersal is infrequent or inefficient.
D. Does not occur.
U. Unknown.
|
C
Observational
|
Identify dispersal mechanisms:
<p class="MsoNormal"><span style="font-size: 8.5pt; font-family: Verdana, sans-serif; background-position: initial initial; background-repeat: initial initial;">Given the large seed size, there is very little potential for people to accidentally start new populations through unintentional seed “hitchhiking”.</span></p>
<p class="MsoNormal"><span style="font-size: 8.5pt; font-family: Verdana, sans-serif; background-position: initial initial; background-repeat: initial initial;"><br />Though some landowners may still plant <em>E. globulus</em> for windbreaks or ornamentals on a limited scale, the conclusion of the California Horticultural Invasives Prevention (Cal-HIP) partnership and the PlantRight campaign is that <em>E. globulus</em> is effectively no longer in the trade. Annual surveys of retail nurseries around California indicate that few (<1%) nurseries now sell <em>E. globulus</em> and it has been moved to their “retired” list of plants because it is so rarely found for sale (PlantRight 2014).<br /></span></p>
Sources of information:
<p>See references in text.</p>
|
Question 2.6 Potential for natural long-distance dispersal?
We have chosen 1 km as the threshold of "long-distance." Assess whether this species is frequently spread, or has high potential to be spread, by animals or abiotic mechanisms that can move seed, roots, stems, or other propagules this far. The following are examples of such natural long-distance dispersal mechanisms:
- the species' fruit or seed is commonly consumed by birds or other animals that travel long distances;
- the species' fruits or seeds are sticky or burred and cling to feathers or hair of animals;
- the species has buoyant fruits, seeds, or other propagules that are dispersed by flowing water;
- the species has light propagules that promote long-distance wind dispersal;
- The species, or parts of it, can detach and disperse seeds as they are blown long distances (e.g., tumbleweed).
Select the one letter below that best describes natural long-distance dispersal and spread:
A. Frequent long-distance dispersal by animals or abiotic mechanisms.
B. Occasional long-distance dispersal by animals or abiotic mechanisms.
C. Rare dispersal more than 1 km by animals or abiotic mechanisms.
D. No dispersal of more than 1 km by animals or abiotic mechanisms.
U. Unknown.
|
C
Reviewed Scientific Publication
|
Identify dispersal mechanisms:
<p>In general, E. globulus seed is not easily dispersed over large distances (Skolmen & Ledig 1990, HEAR 2007, Rejmanek & Richardson 2011). E. globulus seeds are distributed by wind and gravity; calculated dispersal distance from a 40 m (131 ft) height, with winds of 10 km/hr (6 mi/hr), was only 20 m (66 ft) (Skolmen & Ledig 1990). Some seed may be moved by such agents as flood, erosion and birds, but usually seed is dropped within 100 feet of the parent tree (Bean & Russo 2014).</p>
Sources of information:
<p>See references in text.</p>
|
Question 2.7 Other regions invaded?
Assess whether this species has invaded ecological types in other states or countries outside its native range that are analogous to ecological types not yet invaded in your state (see Worksheets B, C, and D for California, Arizona, and Nevada, respectively, in Part IV for lists of ecological types). This information is useful in predicting the likelihood of further spread within your state.
Select the one letter below that best describes the species' invasiveness in other states or countries, outside its native range.
A. This species has invaded 3 or more ecological types elsewhere that exist in your state and are as yet not invaded by this species (e.g. it has invaded Mediterranean grasslands, savanna, and maquis in southern Europe, which are analogous to California grasslands, savanna, and chaparral, respectively).
B. Invades 1 or 2 ecological types that exist but are not yet invaded in your state.
C. Invades elsewhere but only in ecological types that it has already invaded in the state.
D. Not known as an escape anywhere else.
U. Unknown.
|
C
Other Published Material
|
Identify other regions:
<p><em>E. globulus</em> has wide climatic adaptability, with the most successful introductions worldwide in locations with mild, temperate climates, or at somewhat higher elevations in tropical areas (<em>E. globulus</em> does not tolerate frequent freezes). Although it generally grows well in countries with a Mediterranean or cold season maximum rainfall, it grows well also in summer rainfall climates of Ethiopia and Argentina (Skolmen & Ledig 1990). In California, E. globulus populations already exist in the regions suitable to the species’ naturalization (CalWeedMapper 2014).</p>
Sources of information:
<p>See references in text.</p>
|
Section 3: Distribution |
Question 3.1 Ecological amplitude/Range?
Refer to Worksheet C and select the one letter below that indicates the number of different ecological types that this species invades.
A. Widespread: the species invades at least three major types or at least six minor types.
B. Moderate: the species invades two major types or five minor types.
C. Limited: the species invades only one major type and two to four minor types.
D. Narrow: the species invades only one minor type.
U. Unknown.
|
A
Observational
|
Invades five major habitat types: scrub and chaparral; grasslands; bog and marsh; riparian; and forest. These are ecotypes where blue gum stands are found in California, though that presence is typically due to intentional planting. Blue gum is unlikely to actively spread into dense forest vegetation. See Worksheet C.
Sources of information:
|
Question 3.2 Distribution/Peak frequency?
To assess distribution, record the letter that corresponds to the highest percent infested score entered in Worksheet C for any ecological type.
|
C
Observational
|
Describe distribution:
See Worksheet C. 5-20% is the highest portion of occurrences invaded in any of the invaded ecotypes.
Sources of information:
|
Reaches reproductive maturity in 2 years or less |
No |
Dense infestations produce >1,000 viable seed per square meter |
Unknown |
Populations of this species produce seeds every year. |
Unknown |
Seed production sustained over 3 or more months within a population annually |
Yes |
Seeds remain viable in soil for three or more years |
No |
Viable seed produced with both self-pollination and cross-pollination |
No |
Has quickly spreading vegetative structures (rhizomes, roots, etc.) that may root at nodes |
No |
Fragments easily and fragments can become established elsewhere |
No |
Resprouts readily when cut, grazed, or burned |
Yes |
Total points: |
2
|
Total unknowns: |
2 |
Total score: |
C?
Scoring Criteria for Worksheet A
A. High reproductive potential (6 or more points).
B. Moderate reproductive potential (4-5 points).
C. Low reproductive potential (3 points or less and less than 3 Unknowns).
U. Unknown (3 or fewer points and 3 or more Unknowns).
|
Related traits:
Worksheet B - Arizona Ecological Types is not included here
(sensu Holland 1986)
Major Ecological Types |
Minor Ecological Types |
Code?
A means >50% of type occurrences are invaded;
B means 20% to 50%;
C means 5% to 20%;
D means present but <5%;
U means unknown (unable to estimate percentage of occurrences invaded)
|
Marine Systems | marine systems | |
Freshwater and Estuarine | lakes, ponds, reservoirs | |
Aquatic Systems | rivers, streams, canals | |
estuaries | |
Dunes | coastal | |
desert | |
interior | |
Scrub and Chaparral | coastal bluff scrub | |
coastal scrub | D, < 5% |
Sonoran desert scrub | |
Mojavean desert scrub (incl. Joshua tree woodland) | |
Great Basin scrub | |
chenopod scrub | |
montane dwarf scrub | |
Upper Sonoran subshrub scrub | |
chaparral | C, 5% - 20% |
Grasslands, Vernal Pools, Meadows, and other Herb Communities | coastal prairie | D, < 5% |
valley and foothill grassland | |
Great Basin grassland | |
vernal pool | |
meadow and seep | |
alkali playa | |
pebble plain | |
Bog and Marsh | bog and fen | |
marsh and swamp | C, 5% - 20% |
Riparian and Bottomland habitat | riparian forest | D, < 5% |
riparian woodland | D, < 5% |
riparian scrub (incl.desert washes) | |
Woodland | cismontane woodland | |
piñon and juniper woodland | |
Sonoran thorn woodland | |
Forest | broadleaved upland forest | C, 5% - 20% |
North Coast coniferous forest | C, 5% - 20% |
closed cone coniferous forest | |
lower montane coniferous forest | |
upper montane coniferous forest | |
subalpine coniferous forest | |
Alpine Habitats | alpine boulder and rock field | |
alpine dwarf scrub | |
|
Amplitude (breadth): |
A |
|
Distribution (highest score): |
C |
Infested Jepson Regions
Click here for a map of Jepson regions
- Great Valley
- Northwest
- Sierra Nevada
- Southwest