Plant Assessment Form
More Erodium cicutarium resources
Erodium cicutarium
Common Names: redstem filaree; redstem stork's bill; filaree
Evaluated on: 2/1/05
List committee review date: 08/07/2005
Re-evaluation date:
Evaluator(s)
Elizabeth Brusati, project manager
California Invasive Plant Council
1442A Walnut St. #462, Berkeley, CA 94709
510-843-3902
edbrusati@cal-ipc.org
Joseph DiTomaso
University of California-Davis
Dept. Plant Sci., Mail Stop 4, Davis, CA 95616
530-754-8715
jmditomaso@ucdavis.edu
List committee members
Joe DiTomaso
Joanna Clines
Cynthia Roye
Doug Johnson
General Comments
In grasslands, E. botrys, E. brachycarpum, and E. cicutarium all coexist and behave similarly.
|
|
Overall Score ?
Plant scoring matrix
Based on letter scores from Sections 1 through 3 below
Impact | Invasiveness | Distribution | | |
A | A B | Any | High | No Alert |
A | C D | Any | Moderate | Alert |
B | A B | A B | Moderate | No Alert |
B | A B | C D | Moderate | Alert |
B | C D | Any | Limited | No Alert |
C | A | A B | Moderate | No Alert |
C | A | C D | Limited | No Alert |
C | B | A | Moderate | No Alert |
C | B | B D | Limited | No Alert |
C | C | Any | Limited | No Alert |
D | Any | Any | Not Listed | No Alert |
Limited
|
Alert Status ?
Plant scoring matrix
Based on letter scores from Sections 1 through 3 below
Impact | Invasiveness | Distribution | Alert |
A | A or B | C or D | Alert |
B | A or B | C or D | Alert |
No Alert
|
Documentation ?
The total documentation score is the average
of Documentation scores given in Table 2.
Reviewed Scientific Publication | 4 points |
Other Published Material | 3 points |
Observational | 2 points |
Anecdotal | 1 points |
Unknown or No Information | 0 points |
3 out of 5
|
|
|
Score |
Documentation |
|
1.1 |
?Impact on abiotic ecosystem processes
Consider the impact on the natural range and variation of abiotic ecosystem processes and system-wide parameters in ways that significantly diminish the ability of native species to survive and reproduce. Alterations that determine the types of communities that can exist in a given area are of greatest concern. Examples of abiotic processes include:
- fire occurrence, frequency, and intensity;
- geomorphological changes such as erosion and sedimentation rates;
- hydrological regimes, including soil water table;
- nutrient and mineral dynamics, including salinity, alkalinity, and pH;
- light availability (e.g. when an aquatic invader covers an entire water body that would otherwise be open).
Select the one letter below that best describes this species' most severe impact on an abiotic ecosystem process:
A. Severe, possibly irreversible, alteration or disruption of an ecosystem process.
B. Moderate alteration of an ecosystem process.
C. Minor alteration of an ecosystem process.
D. Negligible perceived impact on an ecosystem process.
U. Unknown.
|
D. Negligible |
Observational |
Impact?
Section 1 Scoring Matrix |
Q 1.1 | Q 1.2 | Q 1.3 | Q 1.4 | Score |
A | A | Any | Any | A |
A | B | A,B | Any | A |
A | B | C,D,U | Any | B |
A | C,D,U | Any | Any | B |
B | A | A | Any | A |
B | A | B | A | A |
B | A | B,C | B-D,U | B |
B | A | C,D,U | A | A |
B | A | C,D,U | B-D,U | B |
B | B | A | A | A |
B | C,D,U | A | A | B |
B | B-D | A | B-D,U | B |
B | B-D | B-D,U | Any | B |
B | D,U | C,D,U | A-B | B |
B | D,U | C,D,U | C,D,U | C |
C-D,U | A | A | Any | A |
C | B | A | Any | B |
C | A,B | B-D,U | Any | B |
C | C,D,U | Any | Any | C |
D | A,B | B | Any | B |
D | A,B | C,D,U | Any | C |
D | C | Any | Any | C |
D | D,U | Any | Any | D |
U | A | B,C | Any | B |
U | B,C | A,B | Any | B |
U | B,C | C,D,U | Any | C |
U | U | Any | Any | U |
Four-part score
DCDD
Total Score
C
|
1.2 |
?Impact on plant community
Consider the cumulative ecological impact of this species to the plant communities it invades. Give more weight to changes in plant composition, structure, and interactions that involve rare or keystone species or rare community types. Examples of severe impacts include:
- formation of stands dominated (>75% cover) by the species;
- occlusion (>75% cover) of a native canopy, including a water surface, that eliminates or degrades layers below;
- significant reduction or extirpation of populations of one or more native species.
Examples of impacts usually less than severe include:
- reduction in propagule dispersal, seedling recruitment, or survivorship of native species;
- creation of a new structural layer, including substantial thatch or litter, without elimination or replacement of a pre-existing layer;
- change in density or depth of a structural layer;
- change in horizontal distribution patterns or fragmentation of a native community;
- creation of a vector or intermediate host of pests or pathogens that infect native plant species.
Select the one letter below that best describes this species' impact on community composition, structure and interactions:
A. Severe alteration of plant community composition, structure, or interactions.
B. Moderate alteration of plant community composition.
C. Minor alteration of community composition.
D. Negligible impact known; causes no perceivable change in community composition, structure, or interactions.
U. Unknown.
|
C. Minor |
Reviewed Scientific Publication |
1.3 |
?Impact on higher trophic levels
Consider the cumulative impact of this species on the animals, fungi, microbes, and other organisms in the communities that it invades. Although a non-native species may provide resources for one or a few native species (e.g. by providing food, nesting sites, etc.), the ranking should be based on the species' net impact on all native species. Give more weight to changes in composition and interactions involving rare or keystone species or rare community types.
Examples of severe impacts include:
- extirpation or endangerment of an existing native species or population;
- elimination or significant reduction in native species' nesting or foraging sites, cover, or other critical resources (i.e., native species habitat), including migratory corridors.
Examples of impacts that are usually less than severe include:
- minor reduction in nesting or foraging sites, cover, etc. for native animals;
- minor reduction in habitat connectivity or migratory corridors;
- interference with native pollinators;
- injurious components, such as awns or spines that damage the mouth and gut of native wildlife species, or production of anti-digestive or acutely toxic chemical that can poison native wildlife species.
Select the one letter below that best describes this species' impact on community composition and interactions:
A. Severe alteration of higher trophic populations, communities, or interactions.
B. Moderate alteration of higher trophic level populations, communities, or interactions.
C. Minor alteration of higher trophic level populations, communities or interactions.
D. Negligible impact; causes no perceivable change in higher trophic level populations, communities, or interactions.
E. Unknown.
|
D. Negligible |
Reviewed Scientific Publication |
1.4 |
?Impact on genetic integrity
Consider whether the species can hybridize with and influence the proportion of individuals with non-native genes within populations of native species. Mechanisms and possible outcomes include:
- production of fertile or sterile hybrids that can outcompete the native species;
- production of sterile hybrids that lower the reproductive output of the native species.
Select the one letter below that best describes this species' impact on genetic integrity:
A. Severe (high proportion of individuals).
B. Moderate (medium proportion of individuals).
C. Minor (low proportion of individuals).
D. No known hybridization.
U. Unknown.
|
D. None |
Other Published Material |
|
2.1 |
?Role of anthropogenic and natural disturbance in establishment
Assess dependence on disturbance, both human and natural, for establishment of this species in wildlands. Examples of anthropogenic disturbances include:
- grazing, browsing, and rooting by domestic livestock and feral animals;
- altered fire regimes, including fire suppression;
- cultivation;
- silvicultural practices;
- altered hydrology due to dams, diversions, irrigation, etc.;
- roads and trails;
- construction;
- nutrient loading from fertilizers, runoff, etc.
Examples of natural disturbance include:
- wildfire;
- floods;
- landslides;
- windthrow;
- native animal activities such as burrowing, grazing, or browsing.
Select the first letter in the sequence below that describes the ability of this species to invade wildlands:
A. Severe invasive potential: this species can establish independent of any known natural or anthropogenic disturbance.
B. Moderate invasive potential: this species may occasionally establish in undisturbed areas but can readily establish in areas with natural disturbances.
C. Low invasive potential: this species requires anthropogenic disturbance to establish.
D. No perceptible invasive potential: this species does not establish in wildlands (though it may persist from former cultivation).
U. Unknown.
|
C. Minor |
Reviewed Scientific Publication |
Invasiveness?
Section 2 Scoring Matrix |
Total points | Score |
17-21 | A |
11-16 | B |
5-10 | C |
0-4 | D |
More than two U's | U |
Total Points
10
Total Score
C
|
2.2 |
?Local rate of spread with no management
Assess rate of spread in existing localized infestations where the proportion of available habitat invaded is still small when no management measures are implemented.
Select the one letter below that best describes the rate of spread:
A. Increases rapidly (doubling in <10 years)
B. Increases, but less rapidly
C. Stable
D. Declining
U. Unknown
|
C. Stable |
Observational |
2.3 |
?Recent trend in total area infested within state
Assess the overall trend in the total area infested by this species statewide. Include current management efforts in this assessment and note them.
Select the one letter below that best describes the current trend:
A. Increasing rapidly (doubling in total range statewide in <10 years)
B. Increasing, but less rapidly
C. Stable
D. Declining
U. Unknown
|
C. Stable |
Observational |
2.4 |
?Innate reproductive potential (see Worksheet A)
Assess the innate reproductive potential of this species. Worksheet A is provided for computing the score.
|
B. Moderate |
Other Published Material |
2.5 |
?Potential for human-caused dispersal
Assess whether this species is currently spread: or has high potential to be spread: by direct or indirect human activity. Such activity may enable the species to overcome natural barriers to dispersal that would not be crossed otherwise, or it may simply increase the natural dispersal of the species. Possible mechanisms for dispersal include:
- commercial sales for use in agriculture, ornamental horticulture, or aquariums;
- use as forage, erosion control, or revegetation;
- presence as a contaminant (seeds or propagules) in bulk seed, hay, feed, soil, packing materials, etc.;
- spread along transportation corridors such as highways, railroads, trails, or canals;
- transport on boats or boat trailers.
Select the one letter below that best describes human-caused dispersal and spread:
A. High: there are numerous opportunities for dispersal to new areas.
B. Moderate: human dispersal occurs, but not at a high level.
C. Low: human dispersal is infrequent or inefficient.
D. Does not occur.
U. Unknown.
|
B. Moderate |
Other Published Material |
2.6 |
? Potential for natural long-distance dispersal
We have chosen 1 km as the threshold of "long-distance." Assess whether this species is frequently spread, or has high potential to be spread, by animals or abiotic mechanisms that can move seed, roots, stems, or other propagules this far. The following are examples of such natural long-distance dispersal mechanisms:
- the species' fruit or seed is commonly consumed by birds or other animals that travel long distances;
- the species' fruits or seeds are sticky or burred and cling to feathers or hair of animals;
- the species has buoyant fruits, seeds, or other propagules that are dispersed by flowing water;
- the species has light propagules that promote long-distance wind dispersal;
- The species, or parts of it, can detach and disperse seeds as they are blown long distances (e.g., tumbleweed).
Select the one letter below that best describes natural long-distance dispersal and spread:
A. Frequent long-distance dispersal by animals or abiotic mechanisms.
B. Occasional long-distance dispersal by animals or abiotic mechanisms.
C. Rare dispersal more than 1 km by animals or abiotic mechanisms.
D. No dispersal of more than 1 km by animals or abiotic mechanisms.
U. Unknown.
|
B. Occasional |
Other Published Material |
2.7 |
?Other regions invaded
Assess whether this species has invaded ecological types in other states or countries outside its native range that are analogous to ecological types not yet invaded in your state (see Worksheets B, C, and D for California, Arizona, and Nevada, respectively, in Part IV for lists of ecological types). This information is useful in predicting the likelihood of further spread within your state.
Select the one letter below that best describes the species' invasiveness in other states or countries, outside its native range.
A. This species has invaded 3 or more ecological types elsewhere that exist in your state and are as yet not invaded by this species (e.g. it has invaded Mediterranean grasslands, savanna, and maquis in southern Europe, which are analogous to California grasslands, savanna, and chaparral, respectively).
B. Invades 1 or 2 ecological types that exist but are not yet invaded in your state.
C. Invades elsewhere but only in ecological types that it has already invaded in the state.
D. Not known as an escape anywhere else.
U. Unknown.
|
C. Already invaded |
Reviewed Scientific Publication |
|
3.1 |
?Ecological amplitude/Range (see Worksheet C)
Refer to Worksheet C and select the one letter below that indicates the number of different ecological types that this species invades.
A. Widespread: the species invades at least three major types or at least six minor types.
B. Moderate: the species invades two major types or five minor types.
C. Limited: the species invades only one major type and two to four minor types.
D. Narrow: the species invades only one minor type.
U. Unknown.
|
A. Widespread |
Reviewed Scientific Publication |
Distribution?
Section 3 Scoring Matrix |
Q 3.1 | Q 3.2 | Score |
A | A, B | A |
A | C,D,U | B |
B | A | A |
B | B,C | B |
B | D | C |
C | A,B | B |
C | C,D | C |
D | A | B |
D | B,C | C |
D | D | D |
A,B | U | C |
C,D | U | D |
U | U | U |
Total Score
A
|
3.2 |
?Distribution/Peak frequency (see Worksheet C)
To assess distribution, record the letter that corresponds to the highest percent infested score entered in Worksheet C for any ecological type.
|
A. High |
Observational |
Scores are explained in the "Criteria for Categorizing Invasive Non-Native Plants that Threaten Wildlands".
Section 1: Impact |
Question 1.1 Impact on abiotic ecosystem processes?
Consider the impact on the natural range and variation of abiotic ecosystem processes and system-wide parameters in ways that significantly diminish the ability of native species to survive and reproduce. Alterations that determine the types of communities that can exist in a given area are of greatest concern. Examples of abiotic processes include:
- fire occurrence, frequency, and intensity;
- geomorphological changes such as erosion and sedimentation rates;
- hydrological regimes, including soil water table;
- nutrient and mineral dynamics, including salinity, alkalinity, and pH;
- light availability (e.g. when an aquatic invader covers an entire water body that would otherwise be open).
Select the one letter below that best describes this species' most severe impact on an abiotic ecosystem process:
A. Severe, possibly irreversible, alteration or disruption of an ecosystem process.
B. Moderate alteration of an ecosystem process.
C. Minor alteration of an ecosystem process.
D. Negligible perceived impact on an ecosystem process.
U. Unknown.
|
D
Observational
|
Identify ecosystem processes impacted:
Do not appear to have significant impact on abiotic processes.
Sources of information:
|
Question 1.2 Impact on plant community composition, structure, and interactions?
Consider the cumulative ecological impact of this species to the plant communities it invades. Give more weight to changes in plant composition, structure, and interactions that involve rare or keystone species or rare community types. Examples of severe impacts include:
- formation of stands dominated (>75% cover) by the species;
- occlusion (>75% cover) of a native canopy, including a water surface, that eliminates or degrades layers below;
- significant reduction or extirpation of populations of one or more native species.
Examples of impacts usually less than severe include:
- reduction in propagule dispersal, seedling recruitment, or survivorship of native species;
- creation of a new structural layer, including substantial thatch or litter, without elimination or replacement of a pre-existing layer;
- change in density or depth of a structural layer;
- change in horizontal distribution patterns or fragmentation of a native community;
- creation of a vector or intermediate host of pests or pathogens that infect native plant species.
Select the one letter below that best describes this species' impact on community composition, structure and interactions:
A. Severe alteration of plant community composition, structure, or interactions.
B. Moderate alteration of plant community composition.
C. Minor alteration of community composition.
D. Negligible impact known; causes no perceivable change in community composition, structure, or interactions.
U. Unknown.
|
C
Reviewed Scientific Publication
|
Identify type of impact or alteration:
May be able to outcompete native species. Forms large basal rosettes of leaves that can kill nearby plants (1), but this generally only occurs after disturbance, such as fire and they are quickly outcompeted within a year or two of fire.
Sources of information:
1. Coomes, D. A., M. Rees, P. J. Grubb, and L. Turnbull. 2002. Are differences in seed mass among species important in structuring plant communities? Evidence from analyses of spatial and temporal variation in dune-annual populations. Oikos 96(3): 421-432.
Kyser and DiTomaso, 2002. Weed Science
|
Question 1.3 Impact on higher trophic levels?
Consider the cumulative impact of this species on the animals, fungi, microbes, and other organisms in the communities that it invades. Although a non-native species may provide resources for one or a few native species (e.g. by providing food, nesting sites, etc.), the ranking should be based on the species' net impact on all native species. Give more weight to changes in composition and interactions involving rare or keystone species or rare community types.
Examples of severe impacts include:
- extirpation or endangerment of an existing native species or population;
- elimination or significant reduction in native species' nesting or foraging sites, cover, or other critical resources (i.e., native species habitat), including migratory corridors.
Examples of impacts that are usually less than severe include:
- minor reduction in nesting or foraging sites, cover, etc. for native animals;
- minor reduction in habitat connectivity or migratory corridors;
- interference with native pollinators;
- injurious components, such as awns or spines that damage the mouth and gut of native wildlife species, or production of anti-digestive or acutely toxic chemical that can poison native wildlife species.
Select the one letter below that best describes this species' impact on community composition and interactions:
A. Severe alteration of higher trophic populations, communities, or interactions.
B. Moderate alteration of higher trophic level populations, communities, or interactions.
C. Minor alteration of higher trophic level populations, communities or interactions.
D. Negligible impact; causes no perceivable change in higher trophic level populations, communities, or interactions.
E. Unknown.
|
D
Reviewed Scientific Publication
|
Identify type of impact or alteration:
Forms a mutualistic relationship with endangered kangaroo rats, which eat the seeds (1, 2). Also eaten by desert tortoises (3). Good forage for wildlife although when they form a dominant stand after fire then can reduce annual grasses and limit late season forage. I could not find specific descriptions of negative impacts. 1. Schiffman, P. M. 1994. Promotion of exotic weed establishment by endangered giant kangaroo rats (Dipodomys ingens) in a California grassland. Biodiversity & Conservation 3(6): 524-537.
2. Inouye, R. S. 1981. Interactions among Unrelated Species Granivorous Rodents a Parasitic Fungus and a Shared Prey Species. Oecologia 49(3): 425-427.
2. Hazard, L. C., D. R. Shemanski, and K. A. Nagy. 2000. Digestibility of native and exotic food plants eaten by juvenile desert tortoises. American Zoologist 40(6): 1050. (abstract)
Sources of information:
|
Question 1.4 Impact on genetic integrity?
Consider whether the species can hybridize with and influence the proportion of individuals with non-native genes within populations of native species. Mechanisms and possible outcomes include:
- production of fertile or sterile hybrids that can outcompete the native species;
- production of sterile hybrids that lower the reproductive output of the native species.
Select the one letter below that best describes this species' impact on genetic integrity:
A. Severe (high proportion of individuals).
B. Moderate (medium proportion of individuals).
C. Minor (low proportion of individuals).
D. No known hybridization.
U. Unknown.
|
D
Other Published Material
|
No information available on hybridization, but there are two native Erodium species in California: E. macrophyllum on the south and central coast and the Channel Islands, and E. texanum on the southern coast and desert. Doubtful if these species hybridize. No record of any Erodium species hybridizing.
Sources of information:
Hickman, J. C. (ed.) 1993. The Jepson Manual, Higher Plants of California. University of California Press. Berkeley, CA
|
Section 2: Invasiveness |
Question 2.1 Role of anthropogenic and natural disturbance in establishment?
Assess this species' dependence on disturbance: both human and natural: for establishment in wildlands. Examples of anthropogenic disturbances include:
- grazing, browsing, and rooting by domestic livestock and feral animals;
- altered fire regimes, including fire suppression;
- cultivation;
- silvicultural practices;
- altered hydrology due to dams, diversions, irrigation, etc.;
- roads and trails;
- construction;
- nutrient loading from fertilizers, runoff, etc.
Examples of natural disturbance include:
- wildfire;
- floods;
- landslides;
- windthrow;
- native animal activities such as burrowing, grazing, or browsing.
Select the first letter in the sequence below that describes the ability of this species to invade wildlands:
A. Severe invasive potential: this species can establish independent of any known natural or anthropogenic disturbance.
B. Moderate invasive potential: this species may occasionally establish in undisturbed areas but can readily establish in areas with natural disturbances.
C. Low invasive potential: this species requires anthropogenic disturbance to establish.
D. No perceptible invasive potential: this species does not establish in wildlands (though it may persist from former cultivation).
U. Unknown.
|
C
Observational
|
Describe role of disturbance:
Needs natural or anthropogenic disturbance for establishment. Coverage of Erodium was significantly greater within the disturbed areas of kangaroo rat territories than in the less-disturbed spaces between territories (1). Erodium declined in woodlands but increased in grasslands as grazing intensified (2). Biomass increased with nitrogen addition in the Mojave Desert (3). In British dune, grazing by rabbits reduces perennials and allows establishment of annuals such as Erodium (4). Found mainly in disturbed sites (see 3.1).
Sources of information:
1. Schiffman 1994
2. Rosiere, R. E. 1987. An Evaluation of Grazing Intensity Influences on California USA Annual Range. Journal of Range Management 40(2): 160-165.
3. Brooks, M. L. 2003. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. Journal of Applied Ecology 40(2): 344-353
4. Coomes et al. 2002.
|
Question 2.2 Local rate of spread with no management?
Assess this species' rate of spread in existing localized infestations where the proportion of available habitat invaded is still small when no management measures are implemented.
Select the one letter below that best describes the rate of spread:
A. Increases rapidly (doubling in <10 years)
B. Increases, but less rapidly
C. Stable
D. Declining
U. Unknown
|
C
Observational
|
Describe rate of spread:
Can fluctuate up and down, but over all remains static.
Sources of information:
|
Question 2.3 Recent trend in total area infested within state?
Assess the overall trend in the total area infested by this species statewide. Include current management efforts in this assessment and note them.
Select the one letter below that best describes the current trend:
A. Increasing rapidly (doubling in total range statewide in <10 years)
B. Increasing, but less rapidly
C. Stable
D. Declining
U. Unknown
|
C
Observational
|
Describe trend:
Widely distributed and has been in the state for many years.
Sources of information:
|
Question 2.4 Innate reproductive potential?
Assess the innate reproductive potential of this species. Worksheet A is provided for computing the score.
|
B
Other Published Material
|
Describe key reproductive characteristics:
Summer or winter annual.
In Canada, emerged within 7-13 d of planting. Flowering occurred within 46-65 d of planting. Plants that emerged in late summer did not flower that season and survived as winter annuals. Seed production ranged from 2400-9900 seeds/plant (1). Seeds are impermeable at maturity but become permeable with dry storage and began to germinate immediately when placed upon moist substrate after five years' storage (2). Able to grow well even with water stress (3). DiTomaso and Healy. 2006. Weeds of California. UC DANR Publ. #3488.
Sources of information:
|
Question 2.5 Potential for human-caused dispersal?
Assess whether this species is currently spread: or has high potential to be spread: by direct or indirect human activity. Such activity may enable the species to overcome natural barriers to dispersal that would not be crossed otherwise, or it may simply increase the natural dispersal of the species. Possible mechanisms for dispersal include:
- commercial sales for use in agriculture, ornamental horticulture, or aquariums;
- use as forage, erosion control, or revegetation;
- presence as a contaminant (seeds or propagules) in bulk seed, hay, feed, soil, packing materials, etc.;
- spread along transportation corridors such as highways, railroads, trails, or canals;
- transport on boats or boat trailers.
Select the one letter below that best describes human-caused dispersal and spread:
A. High: there are numerous opportunities for dispersal to new areas.
B. Moderate: human dispersal occurs, but not at a high level.
C. Low: human dispersal is infrequent or inefficient.
D. Does not occur.
U. Unknown.
|
B
Other Published Material
|
Identify dispersal mechanisms:
Can be dispersed by clinging to shoes and clothes of people, tire, and agricultural or maintenance equipment (1).
Sources of information:
1. DiTomaso, J., and E. Healy. in prep. Weeds of California and Other Western States.
|
Question 2.6 Potential for natural long-distance dispersal?
We have chosen 1 km as the threshold of "long-distance." Assess whether this species is frequently spread, or has high potential to be spread, by animals or abiotic mechanisms that can move seed, roots, stems, or other propagules this far. The following are examples of such natural long-distance dispersal mechanisms:
- the species' fruit or seed is commonly consumed by birds or other animals that travel long distances;
- the species' fruits or seeds are sticky or burred and cling to feathers or hair of animals;
- the species has buoyant fruits, seeds, or other propagules that are dispersed by flowing water;
- the species has light propagules that promote long-distance wind dispersal;
- The species, or parts of it, can detach and disperse seeds as they are blown long distances (e.g., tumbleweed).
Select the one letter below that best describes natural long-distance dispersal and spread:
A. Frequent long-distance dispersal by animals or abiotic mechanisms.
B. Occasional long-distance dispersal by animals or abiotic mechanisms.
C. Rare dispersal more than 1 km by animals or abiotic mechanisms.
D. No dispersal of more than 1 km by animals or abiotic mechanisms.
U. Unknown.
|
B
Other Published Material
|
Identify dispersal mechanisms:
Mericarps dispserse by water, soil movement, and especially by clinging to the fur, feathers, or feet of animals (1). Most seed fall to soil surface.
Sources of information:
1. DiTomaso and Healy in prep
|
Question 2.7 Other regions invaded?
Assess whether this species has invaded ecological types in other states or countries outside its native range that are analogous to ecological types not yet invaded in your state (see Worksheets B, C, and D for California, Arizona, and Nevada, respectively, in Part IV for lists of ecological types). This information is useful in predicting the likelihood of further spread within your state.
Select the one letter below that best describes the species' invasiveness in other states or countries, outside its native range.
A. This species has invaded 3 or more ecological types elsewhere that exist in your state and are as yet not invaded by this species (e.g. it has invaded Mediterranean grasslands, savanna, and maquis in southern Europe, which are analogous to California grasslands, savanna, and chaparral, respectively).
B. Invades 1 or 2 ecological types that exist but are not yet invaded in your state.
C. Invades elsewhere but only in ecological types that it has already invaded in the state.
D. Not known as an escape anywhere else.
U. Unknown.
|
C
Reviewed Scientific Publication
|
Identify other regions:
Native to Europe or the Mediterranean. Present in nearly every US state (1). Present in southern Africa (2). Present in rangeland of the semi-arid Caldenal region of Argentina (3).
Sources of information:
1. USDA, NRCS. 2004. The PLANTS Database, Version 3.5 (http://plants.usda.gov). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.
2. Venter, H. J. T. and R. L. Verhoeven. 1990. The Genus Erodium in Southern Africa. South African Journal of Botany 56(1): 79-92.
3. Pelaez et al. 1995
|
Section 3: Distribution |
Question 3.1 Ecological amplitude/Range?
Refer to Worksheet C and select the one letter below that indicates the number of different ecological types that this species invades.
A. Widespread: the species invades at least three major types or at least six minor types.
B. Moderate: the species invades two major types or five minor types.
C. Limited: the species invades only one major type and two to four minor types.
D. Narrow: the species invades only one minor type.
U. Unknown.
|
A
Reviewed Scientific Publication
|
Present in most California counties (1). May have invaded from Baja California before the first California mission was established in 1769; i.e. disturbance by cattle grazing was not responsible for its establishment (2). Present in woodland and grassland (3), and desert dunes (4). Found on roadsides, pastures, fields, grasslands, rangelands, waste places, and other open disturbed sites throughout California to 2000m (5).
Sources of information:
1. USDA 2004
2. Mensing S., and R. Byrne. 1998. Pre-mission Invasion of Erodium cicutarium in California. Journal of Biogeography 25: 757-762
3. Rosiere, R. E. 1987. An Evaluation of Grazing Intensity Influences on California USA Annual Range. Journal of Range Management 40(2): 160-165
4. Brooks 2003
5. DiTomaso and Healy in prep.
|
Question 3.2 Distribution/Peak frequency?
To assess distribution, record the letter that corresponds to the highest percent infested score entered in Worksheet C for any ecological type.
|
A
Observational
|
Describe distribution:
Very common in valley and foothill grasslands.
Sources of information:
|
Reaches reproductive maturity in 2 years or less |
Yes |
Dense infestations produce >1,000 viable seed per square meter |
Yes |
Populations of this species produce seeds every year. |
Yes |
Seed production sustained over 3 or more months within a population annually |
No |
Seeds remain viable in soil for three or more years |
No |
Viable seed produced with both self-pollination and cross-pollination |
Unknown |
Has quickly spreading vegetative structures (rhizomes, roots, etc.) that may root at nodes |
No |
Fragments easily and fragments can become established elsewhere |
No |
Resprouts readily when cut, grazed, or burned |
No |
Total points: |
4
|
Total unknowns: |
1 |
Total score: |
B?
Scoring Criteria for Worksheet A
A. High reproductive potential (6 or more points).
B. Moderate reproductive potential (4-5 points).
C. Low reproductive potential (3 points or less and less than 3 Unknowns).
U. Unknown (3 or fewer points and 3 or more Unknowns).
|
Related traits:
Worksheet B - Arizona Ecological Types is not included here
(sensu Holland 1986)
Major Ecological Types |
Minor Ecological Types |
Code?
A means >50% of type occurrences are invaded;
B means 20% to 50%;
C means 5% to 20%;
D means present but <5%;
U means unknown (unable to estimate percentage of occurrences invaded)
|
Marine Systems | marine systems | |
Freshwater and Estuarine | lakes, ponds, reservoirs | |
Aquatic Systems | rivers, streams, canals | |
estuaries | |
Dunes | coastal | |
desert | D, < 5% |
interior | |
Scrub and Chaparral | coastal bluff scrub | |
coastal scrub | |
Sonoran desert scrub | |
Mojavean desert scrub (incl. Joshua tree woodland) | |
Great Basin scrub | |
chenopod scrub | |
montane dwarf scrub | |
Upper Sonoran subshrub scrub | |
chaparral | C, 5% - 20% |
Grasslands, Vernal Pools, Meadows, and other Herb Communities | coastal prairie | B, 20% - 50% |
valley and foothill grassland | A, > 50% |
Great Basin grassland | C, 5% - 20% |
vernal pool | |
meadow and seep | |
alkali playa | |
pebble plain | |
Bog and Marsh | bog and fen | |
marsh and swamp | |
Riparian and Bottomland habitat | riparian forest | |
riparian woodland | |
riparian scrub (incl.desert washes) | |
Woodland | cismontane woodland | B, 20% - 50% |
piñon and juniper woodland | |
Sonoran thorn woodland | |
Forest | broadleaved upland forest | |
North Coast coniferous forest | |
closed cone coniferous forest | |
lower montane coniferous forest | C, 5% - 20% |
upper montane coniferous forest | |
subalpine coniferous forest | |
Alpine Habitats | alpine boulder and rock field | |
alpine dwarf scrub | |
|
Amplitude (breadth): |
A |
|
Distribution (highest score): |
A |
Infested Jepson Regions
Click here for a map of Jepson regions
- CA Floristic Province
- Cascade Range
- Central West
- Great Valley
- Northwest
- Sierra Nevada
- Southwest
- Great Basin Province
- Modoc Plateau
- Sierra Nevada East
- Desert Province
- Mojave Desert
- Sonoran Desert