Source: California Invasive Plant Council


URL of this page: http://www.cal-ipc.org/site/paf/305
Print

Cal-IPC Plant Assessment Form

For use with "Criteria for Categorizing Invasive Non-Native Plants that Threaten Wildlands"
by the California Invasive Plant Council and the Southwest Vegetation Management Association

Table 1. Species and Evaluator Information

Species name
(Latin binomial):
The official Latin binomial name for this species. Specify only one name here. Additional species names may go into the Synonyms field.

Cordyline australis

Synonyms:
Additional Latin binomial names for this species. Separate multiple names with a ; character. Please avoid narrative descriptions, and list only the binomial names.
Cordyline australis (G. Forst.) Endl.; Cordyline australis Endl.; Dracaena australis
Common names:
Common names for this species. Separate multiple names with a ; character.
New Zealand cabbage tree; cabbage tree; Ti Kouka; giant dracaena [dracena]; dracaena palm
Evaluation date:
The date(s) when this species PAF was filled out, modified, or reviewed. This is free-form text, so it may include multiple dates or other notes.
12/14/05
Evaluator #1 Peter J. Warner
California Department of Parks and Recreation; CNPS; Cal-IPC
P. O. Box 603, Little River, CA 95456
(707) 937-9172 (w); (707) 937-278 (h)
pwarn@parks.ca.gov ; corylus@earthlink.net
List committee members: Joe DiTomaso, John Randall, Peter Warner, Jake Sigg
Committee review date: 1/10/06
List date:
Re-evaluation date(s):
General comments
on this assessment:
Enter any additional notes about this assessment, such as factors affecting the reliability or completeness of the answers, likely affects of impacts, or research which is not specific to California but is still relevant in the evaluation of this species.
Based on very limited information, including only 2 reported wildland observations. Other: Horticultural. This plant appears best suited to moist, cool climates, perhaps augmented by summer fog and improved by overstory shading of coniferous trees, and is cold-hardy to about -10 degrees Celsius. Thus, it is unlikely that it would pose a threat to habitats in southern or inland California. However, it has not been widely reported from wildlands, despite the presence of extensive habitats for which it appears well suited, from the San Francisco Bay Area north to the Oregon state line, especially closer to the coast.

Table 2. Criteria, Section, and Overall Scores

Overall Score

Plant scoring matrix
Based on letter scores from Sections 1 through 3 below

ImpactInvasivenessDistribution
AA BAnyHighNo Alert
AC DAnyModerateAlert
BA BA BModerateNo Alert
BA BC DModerateAlert
BC DAnyLimitedNo Alert
CAA BModerateNo Alert
CAC DLimitedNo Alert
CBAModerateNo Alert
CBB DLimitedNo Alert
CCAnyLimitedNo Alert
DAnyAnyNot ListedNo Alert

Limited

Alert Status

Plant scoring matrix
Based on letter scores from Sections 1 through 3 below

ImpactInvasivenessDistributionAlert
AA or BC or DAlert
BA or BC or DAlert

No Alert

Documentation

The total documentation score is the average
of Documentation scores given in Table 2.

Reviewed Scientific Publication4 points
Other Published Material3 points
Observational2 points
Anecdotal1 points
Unknown or No Information0 points

2 out of 5

Score Documentation
1.1 Impact on abiotic ecosystem processes
Consider the impact on the natural range and variation of abiotic ecosystem processes and system-wide parameters in ways that significantly diminish the ability of native species to survive and reproduce. Alterations that determine the types of communities that can exist in a given area are of greatest concern. Examples of abiotic processes include:
- fire occurrence, frequency, and intensity;
- geomorphological changes such as erosion and sedimentation rates;
- hydrological regimes, including soil water table;
- nutrient and mineral dynamics, including salinity, alkalinity, and pH;
- light availability (e.g. when an aquatic invader covers an entire water body that would otherwise be open).

Select the one letter below that best describes this species’ most severe impact on an abiotic ecosystem process:
A. Severe, possibly irreversible, alteration or disruption of an ecosystem process.
B. Moderate alteration of an ecosystem process.
C. Minor alteration of an ecosystem process.
D. Negligible perceived impact on an ecosystem process.
U. Unknown.
U. Unknown
Impact
Section 1 Scoring Matrix
Q 1.1Q 1.2Q 1.3Q 1.4Score
AAAnyAnyA
ABA,BAnyA
ABC,D,UAnyB
AC,D,UAnyAnyB
BAAAnyA
BABAA
BAB,CB-D,UB
BAC,D,UAA
BAC,D,UB-D,UB
BBAAA
BC,D,UAAB
BB-DAB-D,UB
BB-DB-D,UAnyB
BD,UC,D,UA-BB
BD,UC,D,UC,D,UC
C-D,UAAAnyA
CBAAnyB
CA,BB-D,UAnyB
CC,D,UAnyAnyC
DA,BBAnyB
DA,BC,D,UAnyC
DCAnyAnyC
DD,UAnyAnyD
UAB,CAnyB
UB,CA,BAnyB
UB,CC,D,UAnyC
UUAnyAnyU


Four-part score
UCUD

Total Score
C
1.2 Impact on plant community
Consider the cumulative ecological impact of this species to the plant communities it invades. Give more weight to changes in plant composition, structure, and interactions that involve rare or keystone species or rare community types. Examples of severe impacts include:
- formation of stands dominated (>75% cover) by the species;
- occlusion (>75% cover) of a native canopy, including a water surface, that eliminates or degrades layers below;
- significant reduction or extirpation of populations of one or more native species.

Examples of impacts usually less than severe include:
- reduction in propagule dispersal, seedling recruitment, or survivorship of native species;
- creation of a new structural layer, including substantial thatch or litter, without elimination or replacement of a pre-existing layer;
- change in density or depth of a structural layer;
- change in horizontal distribution patterns or fragmentation of a native community;
- creation of a vector or intermediate host of pests or pathogens that infect native plant species.

Select the one letter below that best describes this species’ impact on community composition, structure and interactions:
A. Severe alteration of plant community composition, structure, or interactions.
B. Moderate alteration of plant community composition.
C. Minor alteration of community composition.
D. Negligible impact known; causes no perceivable change in community composition, structure, or interactions.
U. Unknown.
C. Minor Observational
1.3 Impact on higher trophic levels
Consider the cumulative impact of this species on the animals, fungi, microbes, and other organisms in the communities that it invades. Although a non-native species may provide resources for one or a few native species (e.g. by providing food, nesting sites, etc.), the ranking should be based on the species’ net impact on all native species. Give more weight to changes in composition and interactions involving rare or keystone species or rare community types.
Examples of severe impacts include:
- extirpation or endangerment of an existing native species or population;
- elimination or significant reduction in native species’ nesting or foraging sites, cover, or other critical resources (i.e., native species habitat), including migratory corridors.

Examples of impacts that are usually less than severe include:
- minor reduction in nesting or foraging sites, cover, etc. for native animals;
- minor reduction in habitat connectivity or migratory corridors;
- interference with native pollinators;
- injurious components, such as awns or spines that damage the mouth and gut of native wildlife species, or production of anti-digestive or acutely toxic chemical that can poison native wildlife species.

Select the one letter below that best describes this species’ impact on community composition and interactions:
A. Severe alteration of higher trophic populations, communities, or interactions.
B. Moderate alteration of higher trophic level populations, communities, or interactions.
C. Minor alteration of higher trophic level populations, communities or interactions.
D. Negligible impact; causes no perceivable change in higher trophic level populations, communities, or interactions.
E. Unknown.
E. Unknown
1.4 Impact on genetic integrity
Consider whether the species can hybridize with and influence the proportion of individuals with non-native genes within populations of native species. Mechanisms and possible outcomes include:
- production of fertile or sterile hybrids that can outcompete the native species;
- production of sterile hybrids that lower the reproductive output of the native species.

Select the one letter below that best describes this species’ impact on genetic integrity:
A. Severe (high proportion of individuals).
B. Moderate (medium proportion of individuals).
C. Minor (low proportion of individuals).
D. No known hybridization.
U. Unknown.
D. None Other Published Material
2.1 Role of anthropogenic and natural disturbance in establishment
Assess this species’ dependence on disturbance—both human and natural—for establishment in wildlands. Examples of anthropogenic disturbances include:
- grazing, browsing, and rooting by domestic livestock and feral animals;
- altered fire regimes, including fire suppression;
- cultivation;
- silvicultural practices;
- altered hydrology due to dams, diversions, irrigation, etc.;
- roads and trails;
- construction;
- nutrient loading from fertilizers, runoff, etc.

Examples of natural disturbance include:
- wildfire;
- floods;
- landslides;
- windthrow;
- native animal activities such as burrowing, grazing, or browsing.

Select the first letter in the sequence below that describes the ability of this species to invade wildlands:
A. Severe invasive potential—this species can establish independent of any known natural or anthropogenic disturbance.
B. Moderate invasive potential—this species may occasionally establish in undisturbed areas but can readily establish in areas with natural disturbances.
C. Low invasive potential—this species requires anthropogenic disturbance to establish.
D. No perceptible invasive potential—this species does not establish in wildlands (though it may persist from former cultivation).
U. Unknown.
A. Severe Observational
Invasiveness
Section 2 Scoring Matrix
Total pointsScore
17-21A
11-16B
5-10C
0-4D
More than two U’sU


Total Points
10

Total Score
C
2.2 Local rate of spread with no management
Assess this species’ rate of spread in existing localized infestations where the proportion of available habitat invaded is still small when no management measures are implemented.

Select the one letter below that best describes the rate of spread:
A. Increases rapidly (doubling in <10 years)
B. Increases, but less rapidly
C. Stable
D. Declining
U. Unknown
B. Increases less rapidly Observational
2.3 Recent trend in total area infested within state
Assess the overall trend in the total area infested by this species statewide. Include current management efforts in this assessment and note them.

Select the one letter below that best describes the current trend:
A. Increasing rapidly (doubling in total range statewide in <10 years)
B. Increasing, but less rapidly
C. Stable
D. Declining
U. Unknown
U. Unknown Observational
2.4 Innate reproductive potential
(see Worksheet A)
Assess the innate reproductive potential of this species. Worksheet A is provided for computing the score.
U. Unknown Other Published Material
2.5 Potential for human-caused dispersal
Assess whether this species is currently spread—or has high potential to be spread—by direct or indirect human activity. Such activity may enable the species to overcome natural barriers to dispersal that would not be crossed otherwise, or it may simply increase the natural dispersal of the species. Possible mechanisms for dispersal include:
- commercial sales for use in agriculture, ornamental horticulture, or aquariums;
- use as forage, erosion control, or revegetation;
- presence as a contaminant (seeds or propagules) in bulk seed, hay, feed, soil, packing materials, etc.;
- spread along transportation corridors such as highways, railroads, trails, or canals;
- transport on boats or boat trailers.

Select the one letter below that best describes human-caused dispersal and spread:
A. High—there are numerous opportunities for dispersal to new areas.
B. Moderate—human dispersal occurs, but not at a high level.
C. Low—human dispersal is infrequent or inefficient.
D. Does not occur.
U. Unknown.
B. Moderate Observational
2.6 Potential for natural long-distance dispersal
We have chosen 1 km as the threshold of "long-distance." Assess whether this species is frequently spread, or has high potential to be spread, by animals or abiotic mechanisms that can move seed, roots, stems, or other propagules this far. The following are examples of such natural long-distance dispersal mechanisms:
- the species’ fruit or seed is commonly consumed by birds or other animals that travel long distances;
- the species’ fruits or seeds are sticky or burred and cling to feathers or hair of animals;
- the species has buoyant fruits, seeds, or other propagules that are dispersed by flowing water;
- the species has light propagules that promote long-distance wind dispersal;
- The species, or parts of it, can detach and disperse seeds as they are blown long distances (e.g., tumbleweed).

Select the one letter below that best describes natural long-distance dispersal and spread:
A. Frequent long-distance dispersal by animals or abiotic mechanisms.
B. Occasional long-distance dispersal by animals or abiotic mechanisms.
C. Rare dispersal more than 1 km by animals or abiotic mechanisms.
D. No dispersal of more than 1 km by animals or abiotic mechanisms.
U. Unknown.
B. Occasional Other Published Material
2.7 Other regions invaded
Assess whether this species has invaded ecological types in other states or countries outside its native range that are analogous to ecological types not yet invaded in your state (see Worksheets B, C, and D for California, Arizona, and Nevada, respectively, in Part IV for lists of ecological types). This information is useful in predicting the likelihood of further spread within your state.

Select the one letter below that best describes the species' invasiveness in other states or countries, outside its native range.
A. This species has invaded 3 or more ecological types elsewhere that exist in your state and are as yet not invaded by this species (e.g. it has invaded Mediterranean grasslands, savanna, and maquis in southern Europe, which are analogous to California grasslands, savanna, and chaparral, respectively).
B. Invades 1 or 2 ecological types that exist but are not yet invaded in your state.
C. Invades elsewhere but only in ecological types that it has already invaded in the state.
D. Not known as an escape anywhere else.
U. Unknown.
C. Already invaded Other Published Material
3.1 Ecological amplitude/Range
(see Worksheet C)
Refer to Worksheet C and select the one letter below that indicates the number of different ecological types that this species invades.
A. Widespread—the species invades at least three major types or at least six minor types.
B. Moderate—the species invades two major types or five minor types.
C. Limited—the species invades only one major type and two to four minor types.
D. Narrow—the species invades only one minor type.
U. Unknown.
C. Limited Observational
Distribution
Section 3 Scoring Matrix
Q 3.1Q 3.2Score
AA, BA
AC,D,UB
BAA
BB,CB
BDC
CA,BB
CC,DC
DAB
DB,CC
DDD
A,BUC
C,DUD
UUU


Total Score
C
3.2 Distribution/Peak frequency
(see Worksheet C)
To assess distribution, record the letter that corresponds to the highest percent infested score entered in Worksheet C for any ecological type.
D. Very low Observational

Table 3. Documentation

Scores are explained in the "Criteria for Categorizing Invasive Non-Native Plants that Threaten Wildlands".
Short citations may be used in this table. List full citations at end of this table.

Section 1: Impact

U Question 1.1 Impact on abiotic ecosystem processes
Consider the impact on the natural range and variation of abiotic ecosystem processes and system-wide parameters in ways that significantly diminish the ability of native species to survive and reproduce. Alterations that determine the types of communities that can exist in a given area are of greatest concern. Examples of abiotic processes include:
- fire occurrence, frequency, and intensity;
- geomorphological changes such as erosion and sedimentation rates;
- hydrological regimes, including soil water table;
- nutrient and mineral dynamics, including salinity, alkalinity, and pH;
- light availability (e.g. when an aquatic invader covers an entire water body that would otherwise be open).

Select the one letter below that best describes this species’ most severe impact on an abiotic ecosystem process:
A. Severe, possibly irreversible, alteration or disruption of an ecosystem process.
B. Moderate alteration of an ecosystem process.
C. Minor alteration of an ecosystem process.
D. Negligible perceived impact on an ecosystem process.
U. Unknown.
Identify ecosystem processes impacted:
No information available.

Sources of information:

Observational C Question 1.2 Impact on plant community composition,
structure, and interactions
Consider the cumulative ecological impact of this species to the plant communities it invades. Give more weight to changes in plant composition, structure, and interactions that involve rare or keystone species or rare community types. Examples of severe impacts include:
- formation of stands dominated (>75% cover) by the species;
- occlusion (>75% cover) of a native canopy, including a water surface, that eliminates or degrades layers below;
- significant reduction or extirpation of populations of one or more native species.

Examples of impacts usually less than severe include:
- reduction in propagule dispersal, seedling recruitment, or survivorship of native species;
- creation of a new structural layer, including substantial thatch or litter, without elimination or replacement of a pre-existing layer;
- change in density or depth of a structural layer;
- change in horizontal distribution patterns or fragmentation of a native community;
- creation of a vector or intermediate host of pests or pathogens that infect native plant species.

Select the one letter below that best describes this species’ impact on community composition, structure and interactions:
A. Severe alteration of plant community composition, structure, or interactions.
B. Moderate alteration of plant community composition.
C. Minor alteration of community composition.
D. Negligible impact known; causes no perceivable change in community composition, structure, or interactions.
U. Unknown.
Identify type of impact or alteration:
Observed to establish as very minor component of north coast coniferous forests in Sonoma County in and adjacent to Salt Pt. State Park (1); does not appear to alter native composition of forest. Invading disturbed and undisturbed uplifted river terrace/mixed-conifer/serpentine grassland complex, in dappled shade, Redwood National Park (Del Norte or Humboldt County) (2) Observations do not indicate any major alteration of community composition, but potential to add a new layer (sub-canopy) in small stands, or to alter riparian zone composition.

Sources of information:
1. Warner, Peter. 2002-2005. Observations at Salt Pt. State Park and Kruse Rhododendron Preserve, Sonoma Co. 707/937-9176; pwarn@parks.ca.gov 2. Williams, Andrea. 2005. Observations at Redwood National Park. 707/464-6101 x 5281; andrea_williams@nps.gov

U Question 1.3 Impact on higher trophic levels
Consider the cumulative impact of this species on the animals, fungi, microbes, and other organisms in the communities that it invades. Although a non-native species may provide resources for one or a few native species (e.g. by providing food, nesting sites, etc.), the ranking should be based on the species’ net impact on all native species. Give more weight to changes in composition and interactions involving rare or keystone species or rare community types.
Examples of severe impacts include:
- extirpation or endangerment of an existing native species or population;
- elimination or significant reduction in native species’ nesting or foraging sites, cover, or other critical resources (i.e., native species habitat), including migratory corridors.

Examples of impacts that are usually less than severe include:
- minor reduction in nesting or foraging sites, cover, etc. for native animals;
- minor reduction in habitat connectivity or migratory corridors;
- interference with native pollinators;
- injurious components, such as awns or spines that damage the mouth and gut of native wildlife species, or production of anti-digestive or acutely toxic chemical that can poison native wildlife species.

Select the one letter below that best describes this species’ impact on community composition and interactions:
A. Severe alteration of higher trophic populations, communities, or interactions.
B. Moderate alteration of higher trophic level populations, communities, or interactions.
C. Minor alteration of higher trophic level populations, communities or interactions.
D. Negligible impact; causes no perceivable change in higher trophic level populations, communities, or interactions.
E. Unknown.
Identify type of impact or alteration:
No information on impacts; small, globose, blue or bluish-white berries in dense panicles (1) (similar in appearance to those of Ligustrum spp. but lighter in color) are bird-dispersed (2). No empirical or observational evidence on higher trophic impacts.

Sources of information:
1. McMinn, H. E., and E. Maino. 1963. An Illustrated Manual of Pacific Coast Trees. University of California Press, Berkeley. p. 121-122. 2. World Wildlife Fund Australia. 2005. National list of naturalized invasive and potentially invasive garden plants. http://www.wwf.org.au/News_and_Information/Publications/PDF/Conservation_guide/ListInvasivePlants.pdf

Other Published Material D Question 1.4 Impact on genetic integrity
Consider whether the species can hybridize with and influence the proportion of individuals with non-native genes within populations of native species. Mechanisms and possible outcomes include:
- production of fertile or sterile hybrids that can outcompete the native species;
- production of sterile hybrids that lower the reproductive output of the native species.

Select the one letter below that best describes this species’ impact on genetic integrity:
A. Severe (high proportion of individuals).
B. Moderate (medium proportion of individuals).
C. Minor (low proportion of individuals).
D. No known hybridization.
U. Unknown.
Identify impacts:
Extremely unlikely since no congeneric species are native to North America; genus is native to tropical regions (1). Inferential.

Sources of information:
1. McMin, H. E., and E. Maino. 1963. An Illustrated Manual of Pacific Coast Trees. University of California Press, Berkeley. p. 121-122.

Section 2: Invasiveness

Observational A Question 2.1 Role of anthropogenic and natural disturbance
in establishment
Assess this species’ dependence on disturbance—both human and natural—for establishment in wildlands. Examples of anthropogenic disturbances include:
- grazing, browsing, and rooting by domestic livestock and feral animals;
- altered fire regimes, including fire suppression;
- cultivation;
- silvicultural practices;
- altered hydrology due to dams, diversions, irrigation, etc.;
- roads and trails;
- construction;
- nutrient loading from fertilizers, runoff, etc.

Examples of natural disturbance include:
- wildfire;
- floods;
- landslides;
- windthrow;
- native animal activities such as burrowing, grazing, or browsing.

Select the first letter in the sequence below that describes the ability of this species to invade wildlands:
A. Severe invasive potential—this species can establish independent of any known natural or anthropogenic disturbance.
B. Moderate invasive potential—this species may occasionally establish in undisturbed areas but can readily establish in areas with natural disturbances.
C. Low invasive potential—this species requires anthropogenic disturbance to establish.
D. No perceptible invasive potential—this species does not establish in wildlands (though it may persist from former cultivation).
U. Unknown.
Describe role of disturbance:
Disturbance does not appear to be a prerequisite site condition for germination of seeds and plant growth and development (1). Plants of many sizes (ages?) observed growing in mature forests and riparian zones (1) that do not appear to be recently disturbed (although logging may have contributed disturbance in some areas in the past). Habitat types invaded as noted in Redwood National Park (2) suggest that disturbance may facilitate germination and growth, but my observations suggest that disturbance post-digestion is not necessary for germination.

Sources of information:
1. Warner, Peter. 2002-2005. Observations at Salt Pt. State Park and Kruse Rhododendron Preserve, Sonoma Co. 707/937-9176; pwarn@parks.ca.gov 2. Williams, Andrea. 2005. Observations at Redwood National Park. 707/464-6101 x 5281; andrea_williams@nps.gov

Observational B Question 2.2 Local rate of spread with no management
Assess this species’ rate of spread in existing localized infestations where the proportion of available habitat invaded is still small when no management measures are implemented.

Select the one letter below that best describes the rate of spread:
A. Increases rapidly (doubling in <10 years)
B. Increases, but less rapidly
C. Stable
D. Declining
U. Unknown
Describe rate of spread:
Not monitored or directly observed. However, species is not native, and I estimate that the population at Salt Pt. SP numbers in the hundreds of plants, so some increase in population has occurred over an indefinite period of time. Plants probably originate from ornamental plantings, perhaps at least several decades old, at surrounding homes (ranger residences, Plantation farm, et al.) (1) Inferential.

Sources of information:
1. Warner, Peter. 2002-2005. Observations at Salt Pt. State Park and Kruse Rhododendron Preserve, Sonoma Co. 707/937-9176; pwarn@parks.ca.gov

Observational U Question 2.3 Recent trend in total area infested within state
Assess the overall trend in the total area infested by this species statewide. Include current management efforts in this assessment and note them.

Select the one letter below that best describes the current trend:
A. Increasing rapidly (doubling in total range statewide in <10 years)
B. Increasing, but less rapidly
C. Stable
D. Declining
U. Unknown
Describe trend:
Conservatively, not changing substantially; reports are limited to two that I know about. However, many forested areas between two known wildland populations could support populations that remain undetected or unreported (1). Two reports and no monitoring data are insufficient to assess area infested, especially considering the widespread planting of this taxon and the large area of potentially suitable habitat for invasion that exists between northern Sonoma County and Del Norte County. (1)

Sources of information:
1. Warner, Peter. 2002-2005. Observations at Salt Pt. State Park and Kruse Rhododendron Preserve, Sonoma Co. 707/937-9176; pwarn@parks.ca.gov

Other Published Material U Question 2.4 Innate reproductive potential
Assess the innate reproductive potential of this species. Worksheet A is provided for computing the score.
Describe key reproductive characteristics:
Produces large numbers of small berries, with several ovules in each of 3 locules, in dense panicles (1), but otherwise, not much information found on reproductive mechanisms, structures, or success. Plants can stump-sprout following removal of stem close to base (2). Insufficient documentation upon which to base an assessment (4 unknown responses on Worksheet A).

Sources of information:
1. McMinn, H. E., and E. Maino. 1963. An Illustrated Manual of Pacific Coast Trees. University of California Press, Berkeley. p. 121-122. 2. Warner, Peter. 2002-2005. Observations at Salt Pt. State Park and Kruse Rhododendron Preserve, Sonoma Co. 707/937-9176; pwarn@parks.ca.gov

Observational B Question 2.5 Potential for human-caused dispersal
Assess whether this species is currently spread—or has high potential to be spread—by direct or indirect human activity. Such activity may enable the species to overcome natural barriers to dispersal that would not be crossed otherwise, or it may simply increase the natural dispersal of the species. Possible mechanisms for dispersal include:
- commercial sales for use in agriculture, ornamental horticulture, or aquariums;
- use as forage, erosion control, or revegetation;
- presence as a contaminant (seeds or propagules) in bulk seed, hay, feed, soil, packing materials, etc.;
- spread along transportation corridors such as highways, railroads, trails, or canals;
- transport on boats or boat trailers.

Select the one letter below that best describes human-caused dispersal and spread:
A. High—there are numerous opportunities for dispersal to new areas.
B. Moderate—human dispersal occurs, but not at a high level.
C. Low—human dispersal is infrequent or inefficient.
D. Does not occur.
U. Unknown.
Identify dispersal mechanisms:
Commonly sold and planted as an ornamental (1) and has been in trade for perhaps a century or more. See www.cordyline.org/ for horticultural information. No information on date of introduction into California. Continues to be planted and maintained in landscapes, increasing potential for bird dispersal of fruits into suitable wildland habitats; especially relevant along northern Calif. coast.

Sources of information:
1. Warner, Peter. 2001-2005. Observations, northern California. 707/937-9176; pwarn@parks.ca.gov International Cordyline Society, Queensland, Australia. www.cordyline.org

Other Published Material B Question 2.6 Potential for natural long-distance dispersal
We have chosen 1 km as the threshold of "long-distance." Assess whether this species is frequently spread, or has high potential to be spread, by animals or abiotic mechanisms that can move seed, roots, stems, or other propagules this far. The following are examples of such natural long-distance dispersal mechanisms:
- the species’ fruit or seed is commonly consumed by birds or other animals that travel long distances;
- the species’ fruits or seeds are sticky or burred and cling to feathers or hair of animals;
- the species has buoyant fruits, seeds, or other propagules that are dispersed by flowing water;
- the species has light propagules that promote long-distance wind dispersal;
- The species, or parts of it, can detach and disperse seeds as they are blown long distances (e.g., tumbleweed).

Select the one letter below that best describes natural long-distance dispersal and spread:
A. Frequent long-distance dispersal by animals or abiotic mechanisms.
B. Occasional long-distance dispersal by animals or abiotic mechanisms.
C. Rare dispersal more than 1 km by animals or abiotic mechanisms.
D. No dispersal of more than 1 km by animals or abiotic mechanisms.
U. Unknown.
Identify dispersal mechanisms:
Bird-dispersed (1) after digestion of small, globose, blue to bluish-white berries; young plants found >1km from ornamental plantings bearing flowers and fruit, but not known is distance to possible fruit-bearing trees in the wild (2). Unknown if fruits or seeds, or mature inflorescences, might float; plants can be found in riparian zones (2).

Sources of information:
1. World Wildlife Fund Australia. 2005. National list of naturalized invasive and potentially invasive garden plants. http://www.wwf.org.au/News_and_Information/Publications/PDF/Conservation_guide/ListInvasivePlants.pdf 2. Warner, Peter. 2002-2005. Observations at Salt Pt. State Park and Kruse Rhododendron Preserve, Sonoma Co. 707/937-9176; pwarn@parks.ca.gov

Other Published Material C Question 2.7 Other regions invaded
Assess whether this species has invaded ecological types in other states or countries outside its native range that are analogous to ecological types not yet invaded in your state (see Worksheets B, C, and D for California, Arizona, and Nevada, respectively, in Part IV for lists of ecological types). This information is useful in predicting the likelihood of further spread within your state.

Select the one letter below that best describes the species' invasiveness in other states or countries, outside its native range.
A. This species has invaded 3 or more ecological types elsewhere that exist in your state and are as yet not invaded by this species (e.g. it has invaded Mediterranean grasslands, savanna, and maquis in southern Europe, which are analogous to California grasslands, savanna, and chaparral, respectively).
B. Invades 1 or 2 ecological types that exist but are not yet invaded in your state.
C. Invades elsewhere but only in ecological types that it has already invaded in the state.
D. Not known as an escape anywhere else.
U. Unknown.
Identify other regions:
Native to New Zealand (1). Mildly to moderately invasive in undescribed habitats in Victoria, Australia (2, 3). Invasiveness in north coastal coniferous forests in California suggest that Cordyline could invade similar types or additional stands of the same type (grand fir-, Douglas-fir-, Bishop pine-dominated forests) Conservatively, this species has invaded the only types likely, considering that it has been planted in landscapes for decades. However, observations are limited.

Sources of information:
1. Desert-Tropicals.com. 2005. Cordyline australis. http://www.desert-tropicals.com/Plants/Agavaceae/Cordyline_australis.html 2. World Wildlife Fund Australia. 2005. National list of naturalized invasive and potentially invasive garden plants. http://www.wwf.org.au/News_and_Information/Publications/PDF/Conservation_guide/ListInvasivePlants.pdf 3. The Nature Conservancy. 2005. The Global Invasive Species Initiative. Rod Randall's Big Weed List. http://tncweeds.ucdavis.edu/global/australia/aca.html

Section 3: Distribution

Observational C Question 3.1 Ecological amplitude/Range
Refer to Worksheet C and select the one letter below that indicates the number of different ecological types that this species invades.
A. Widespread—the species invades at least three major types or at least six minor types.
B. Moderate—the species invades two major types or five minor types.
C. Limited—the species invades only one major type and two to four minor types.
D. Narrow—the species invades only one minor type.
U. Unknown.
Describe ecological amplitude, identifying date of source information and approximate date of introduction to the state, if known:
Observed only in forest dominated by Douglas-fir, grand fir, Bishop pine, or non-native Eucalyptus globulus (1) in or adjacent to Salt Pt. State Park, Sonoma County. Ecological types noted by Williams (2) are not sufficiently described to categorize here. Grows in riparian zones, but only within forest type noted above (1). Based on very limited observations and 2 reports.

Sources of information:
1. Warner, Peter. 2002-2005. Observations at Salt Pt. State Park and Kruse Rhododendron Preserve, Sonoma Co. 707/937-9176; pwarn@parks.ca.goventer text here 2. Williams, Andrea. 2005. Observations at Redwood National Park. 707/464-6101 x 5281; andrea_williams@nps.gov

Observational D Question 3.2 Distribution/Peak frequency
To assess distribution, record the letter that corresponds to the highest percent infested score entered in Worksheet C for any ecological type.
Describe distribution:
Population distributed over several square miles in and adjacent to Salt Pt. State Park, Sonoma Co. (1), and of unknown extent at Redwood National Park (2), Del Norte or Humboldt County; not reported from other wildland areas, nor from the extensive range of similar forest types between 2 reported locations. Based on limited reports, a very low proportion of stands of this type forest have been invaded.

Sources of information:
1. Warner, Peter. 2002-2005. Observations at Salt Pt. State Park and Kruse Rhododendron Preserve, Sonoma Co. 707/937-9176; pwarn@parks.ca.goventer text here 2. Williams, Andrea. 2005. Observations at Redwood National Park. 707/464-6101 x 5281; andrea_williams@nps.gov

Worksheet A - Innate reproductive potential

Reaches reproductive maturity in 2 years or less No
Dense infestations produce >1,000 viable seed per square meter Unknown
Populations of this species produce seeds every year. Unknown
Seed production sustained over 3 or more months within a population annually No
Seeds remain viable in soil for three or more years Unknown
Viable seed produced with both self-pollination and cross-pollination Unknown
Has quickly spreading vegetative structures (rhizomes, roots, etc.) that may root at nodes No
Fragments easily and fragments can become established elsewhere No
Resprouts readily when cut, grazed, or burned Yes, 1 points
Total points: 1
Total unknowns: 4
Total score: U
Scoring Criteria for Worksheet A
A. High reproductive potential (6 or more points).
B. Moderate reproductive potential (4-5 points).
C. Low reproductive potential (3 points or less and less than 3 Unknowns).
U. Unknown (3 or fewer points and 3 or more Unknowns).
Note any related traits:
Seeds may require digestion or other means of treatment for germination, based on inferences from observations. Large amount of seed production possible, but viability and fecundity are unknown.
Return to Table 2

Worksheet B - Arizona Ecological Types is not included here


Worksheet C - California Ecological Types
 
(sensu Holland 1986)

Major Ecological Types Minor Ecological Types Code
A means >50% of type occurrences are invaded;
B means >20% to 50%;
C means >5% to 20%;
D means present but ≤5%;
U means unknown (unable to estimate percentage of occurrences invaded)
Marine Systemsmarine systems
Freshwater and Estuarine lakes, ponds, reservoirs
Aquatic Systemsrivers, streams, canals
estuaries
Dunescoastal
desert
interior
Scrub and Chaparralcoastal bluff scrub
coastal scrub
Sonoran desert scrub
Mojavean desert scrub (incl. Joshua tree woodland)
Great Basin scrub
chenopod scrub
montane dwarf scrub
Upper Sonoran subshrub scrub
chaparral
Grasslands, Vernal Pools, coastal prairie
Meadows, and other Herbvalley and foothill grassland
CommunitiesGreat Basin grassland
vernal pool
meadow and seep
alkali playa
pebble plain
Bog and Marshbog and fen
marsh and swamp
Riparian and Bottomland habitatriparian forest
riparian woodland
riparian scrub (incl.desert washes)
Woodlandcismontane woodland
piñon and juniper woodland
Sonoran thorn woodland
Forestbroadleaved upland forest
North Coast coniferous forestD. < 5%
closed cone coniferous forestD. < 5%
lower montane coniferous forest
upper montane coniferous forest
subalpine coniferous forest
Alpine Habitatsalpine boulder and rock field
alpine dwarf scrub
Amplitude (breadth)  
Distribution (highest score)  
Return to Table 2

Addendum J - Jepson Regions Infested
 
Click here for a map of Jepson regions

Infested Jepson Regions:
Check the boxes to indicate the Jepson floristic provinces in which this species is found.














Addendum L - External Links & Resources

Cal-IPC Plant Profile
The Cal-IPC Plant Profile for this species.
http://www.cal-ipc.org/ip/management/plant_profiles/Cordyline_australis.php
Calflora Plant Profile:
The Calflora Plant Profile for this species.
http://www.calflora.org/cgi-bin/species_query.cgi?where-calrecnum=9076
CalWeedMapper:
Load CalWeedMapper with this species already selected.
http://calweedmapper.cal-ipc.org/maps/?species=162