Source: California Invasive Plant Council


URL of this page: http://www.cal-ipc.org/site/paf/290
Print

Cal-IPC Plant Assessment Form

For use with "Criteria for Categorizing Invasive Non-Native Plants that Threaten Wildlands"
by the California Invasive Plant Council and the Southwest Vegetation Management Association

Table 1. Species and Evaluator Information

Species name
(Latin binomial):
The official Latin binomial name for this species. Specify only one name here. Additional species names may go into the Synonyms field.

Centaurea diffusa

Synonyms:
Additional Latin binomial names for this species. Separate multiple names with a ; character. Please avoid narrative descriptions, and list only the binomial names.
Acosta diffusa (Lam.) Sojak
Common names:
Common names for this species. Separate multiple names with a ; character.
diffuse knapweed
Evaluation date:
The date(s) when this species PAF was filled out, modified, or reviewed. This is free-form text, so it may include multiple dates or other notes.
11/28/05
Evaluator #1 Elizabeth Brusati, project manager
California Invasive Plant Council
1442A Walnut St. #462, Berkeley, CA 94709
510-843-3902
edbrusati@cal-ipc.org
Evaluator #2 Joseph M. DiTomaso/Coop. Ext. Specialist
University of California, Davis
Weed Science Program, Robbins Hall
530-754-8715
ditomaso@vegmail.ucdavis.edu
List committee members: Joe DiTomaso, John Randall, Peter Warner, Jake Sigg
Committee review date: 1/10/06
List date:
Re-evaluation date(s):
General comments
on this assessment:
Enter any additional notes about this assessment, such as factors affecting the reliability or completeness of the answers, likely affects of impacts, or research which is not specific to California but is still relevant in the evaluation of this species.

Table 2. Criteria, Section, and Overall Scores

Overall Score

Plant scoring matrix
Based on letter scores from Sections 1 through 3 below

ImpactInvasivenessDistribution
AA BAnyHighNo Alert
AC DAnyModerateAlert
BA BA BModerateNo Alert
BA BC DModerateAlert
BC DAnyLimitedNo Alert
CAA BModerateNo Alert
CAC DLimitedNo Alert
CBAModerateNo Alert
CBB DLimitedNo Alert
CCAnyLimitedNo Alert
DAnyAnyNot ListedNo Alert

Moderate

Alert Status

Plant scoring matrix
Based on letter scores from Sections 1 through 3 below

ImpactInvasivenessDistributionAlert
AA or BC or DAlert
BA or BC or DAlert

No Alert

Documentation

The total documentation score is the average
of Documentation scores given in Table 2.

Reviewed Scientific Publication4 points
Other Published Material3 points
Observational2 points
Anecdotal1 points
Unknown or No Information0 points

3.3 out of 5

Score Documentation
1.1 Impact on abiotic ecosystem processes
Consider the impact on the natural range and variation of abiotic ecosystem processes and system-wide parameters in ways that significantly diminish the ability of native species to survive and reproduce. Alterations that determine the types of communities that can exist in a given area are of greatest concern. Examples of abiotic processes include:
- fire occurrence, frequency, and intensity;
- geomorphological changes such as erosion and sedimentation rates;
- hydrological regimes, including soil water table;
- nutrient and mineral dynamics, including salinity, alkalinity, and pH;
- light availability (e.g. when an aquatic invader covers an entire water body that would otherwise be open).

Select the one letter below that best describes this species’ most severe impact on an abiotic ecosystem process:
A. Severe, possibly irreversible, alteration or disruption of an ecosystem process.
B. Moderate alteration of an ecosystem process.
C. Minor alteration of an ecosystem process.
D. Negligible perceived impact on an ecosystem process.
U. Unknown.
B. Moderate Reviewed Scientific Publication
Impact
Section 1 Scoring Matrix
Q 1.1Q 1.2Q 1.3Q 1.4Score
AAAnyAnyA
ABA,BAnyA
ABC,D,UAnyB
AC,D,UAnyAnyB
BAAAnyA
BABAA
BAB,CB-D,UB
BAC,D,UAA
BAC,D,UB-D,UB
BBAAA
BC,D,UAAB
BB-DAB-D,UB
BB-DB-D,UAnyB
BD,UC,D,UA-BB
BD,UC,D,UC,D,UC
C-D,UAAAnyA
CBAAnyB
CA,BB-D,UAnyB
CC,D,UAnyAnyC
DA,BBAnyB
DA,BC,D,UAnyC
DCAnyAnyC
DD,UAnyAnyD
UAB,CAnyB
UB,CA,BAnyB
UB,CC,D,UAnyC
UUAnyAnyU


Four-part score
BABD

Total Score
B
1.2 Impact on plant community
Consider the cumulative ecological impact of this species to the plant communities it invades. Give more weight to changes in plant composition, structure, and interactions that involve rare or keystone species or rare community types. Examples of severe impacts include:
- formation of stands dominated (>75% cover) by the species;
- occlusion (>75% cover) of a native canopy, including a water surface, that eliminates or degrades layers below;
- significant reduction or extirpation of populations of one or more native species.

Examples of impacts usually less than severe include:
- reduction in propagule dispersal, seedling recruitment, or survivorship of native species;
- creation of a new structural layer, including substantial thatch or litter, without elimination or replacement of a pre-existing layer;
- change in density or depth of a structural layer;
- change in horizontal distribution patterns or fragmentation of a native community;
- creation of a vector or intermediate host of pests or pathogens that infect native plant species.

Select the one letter below that best describes this species’ impact on community composition, structure and interactions:
A. Severe alteration of plant community composition, structure, or interactions.
B. Moderate alteration of plant community composition.
C. Minor alteration of community composition.
D. Negligible impact known; causes no perceivable change in community composition, structure, or interactions.
U. Unknown.
A. Severe Reviewed Scientific Publication
1.3 Impact on higher trophic levels
Consider the cumulative impact of this species on the animals, fungi, microbes, and other organisms in the communities that it invades. Although a non-native species may provide resources for one or a few native species (e.g. by providing food, nesting sites, etc.), the ranking should be based on the species’ net impact on all native species. Give more weight to changes in composition and interactions involving rare or keystone species or rare community types.
Examples of severe impacts include:
- extirpation or endangerment of an existing native species or population;
- elimination or significant reduction in native species’ nesting or foraging sites, cover, or other critical resources (i.e., native species habitat), including migratory corridors.

Examples of impacts that are usually less than severe include:
- minor reduction in nesting or foraging sites, cover, etc. for native animals;
- minor reduction in habitat connectivity or migratory corridors;
- interference with native pollinators;
- injurious components, such as awns or spines that damage the mouth and gut of native wildlife species, or production of anti-digestive or acutely toxic chemical that can poison native wildlife species.

Select the one letter below that best describes this species’ impact on community composition and interactions:
A. Severe alteration of higher trophic populations, communities, or interactions.
B. Moderate alteration of higher trophic level populations, communities, or interactions.
C. Minor alteration of higher trophic level populations, communities or interactions.
D. Negligible impact; causes no perceivable change in higher trophic level populations, communities, or interactions.
E. Unknown.
B. Moderate Reviewed Scientific Publication
1.4 Impact on genetic integrity
Consider whether the species can hybridize with and influence the proportion of individuals with non-native genes within populations of native species. Mechanisms and possible outcomes include:
- production of fertile or sterile hybrids that can outcompete the native species;
- production of sterile hybrids that lower the reproductive output of the native species.

Select the one letter below that best describes this species’ impact on genetic integrity:
A. Severe (high proportion of individuals).
B. Moderate (medium proportion of individuals).
C. Minor (low proportion of individuals).
D. No known hybridization.
U. Unknown.
D. None Other Published Material
2.1 Role of anthropogenic and natural disturbance in establishment
Assess this species’ dependence on disturbance—both human and natural—for establishment in wildlands. Examples of anthropogenic disturbances include:
- grazing, browsing, and rooting by domestic livestock and feral animals;
- altered fire regimes, including fire suppression;
- cultivation;
- silvicultural practices;
- altered hydrology due to dams, diversions, irrigation, etc.;
- roads and trails;
- construction;
- nutrient loading from fertilizers, runoff, etc.

Examples of natural disturbance include:
- wildfire;
- floods;
- landslides;
- windthrow;
- native animal activities such as burrowing, grazing, or browsing.

Select the first letter in the sequence below that describes the ability of this species to invade wildlands:
A. Severe invasive potential—this species can establish independent of any known natural or anthropogenic disturbance.
B. Moderate invasive potential—this species may occasionally establish in undisturbed areas but can readily establish in areas with natural disturbances.
C. Low invasive potential—this species requires anthropogenic disturbance to establish.
D. No perceptible invasive potential—this species does not establish in wildlands (though it may persist from former cultivation).
U. Unknown.
B. Moderate Reviewed Scientific Publication
Invasiveness
Section 2 Scoring Matrix
Total pointsScore
17-21A
11-16B
5-10C
0-4D
More than two U’sU


Total Points
13

Total Score
B
2.2 Local rate of spread with no management
Assess this species’ rate of spread in existing localized infestations where the proportion of available habitat invaded is still small when no management measures are implemented.

Select the one letter below that best describes the rate of spread:
A. Increases rapidly (doubling in <10 years)
B. Increases, but less rapidly
C. Stable
D. Declining
U. Unknown
B. Increases less rapidly Observational
2.3 Recent trend in total area infested within state
Assess the overall trend in the total area infested by this species statewide. Include current management efforts in this assessment and note them.

Select the one letter below that best describes the current trend:
A. Increasing rapidly (doubling in total range statewide in <10 years)
B. Increasing, but less rapidly
C. Stable
D. Declining
U. Unknown
D. Declining Other Published Material
2.4 Innate reproductive potential
(see Worksheet A)
Assess the innate reproductive potential of this species. Worksheet A is provided for computing the score.
A. High Reviewed Scientific Publication
2.5 Potential for human-caused dispersal
Assess whether this species is currently spread—or has high potential to be spread—by direct or indirect human activity. Such activity may enable the species to overcome natural barriers to dispersal that would not be crossed otherwise, or it may simply increase the natural dispersal of the species. Possible mechanisms for dispersal include:
- commercial sales for use in agriculture, ornamental horticulture, or aquariums;
- use as forage, erosion control, or revegetation;
- presence as a contaminant (seeds or propagules) in bulk seed, hay, feed, soil, packing materials, etc.;
- spread along transportation corridors such as highways, railroads, trails, or canals;
- transport on boats or boat trailers.

Select the one letter below that best describes human-caused dispersal and spread:
A. High—there are numerous opportunities for dispersal to new areas.
B. Moderate—human dispersal occurs, but not at a high level.
C. Low—human dispersal is infrequent or inefficient.
D. Does not occur.
U. Unknown.
A. High Reviewed Scientific Publication
2.6 Potential for natural long-distance dispersal
We have chosen 1 km as the threshold of "long-distance." Assess whether this species is frequently spread, or has high potential to be spread, by animals or abiotic mechanisms that can move seed, roots, stems, or other propagules this far. The following are examples of such natural long-distance dispersal mechanisms:
- the species’ fruit or seed is commonly consumed by birds or other animals that travel long distances;
- the species’ fruits or seeds are sticky or burred and cling to feathers or hair of animals;
- the species has buoyant fruits, seeds, or other propagules that are dispersed by flowing water;
- the species has light propagules that promote long-distance wind dispersal;
- The species, or parts of it, can detach and disperse seeds as they are blown long distances (e.g., tumbleweed).

Select the one letter below that best describes natural long-distance dispersal and spread:
A. Frequent long-distance dispersal by animals or abiotic mechanisms.
B. Occasional long-distance dispersal by animals or abiotic mechanisms.
C. Rare dispersal more than 1 km by animals or abiotic mechanisms.
D. No dispersal of more than 1 km by animals or abiotic mechanisms.
U. Unknown.
B. Occasional Other Published Material
2.7 Other regions invaded
Assess whether this species has invaded ecological types in other states or countries outside its native range that are analogous to ecological types not yet invaded in your state (see Worksheets B, C, and D for California, Arizona, and Nevada, respectively, in Part IV for lists of ecological types). This information is useful in predicting the likelihood of further spread within your state.

Select the one letter below that best describes the species' invasiveness in other states or countries, outside its native range.
A. This species has invaded 3 or more ecological types elsewhere that exist in your state and are as yet not invaded by this species (e.g. it has invaded Mediterranean grasslands, savanna, and maquis in southern Europe, which are analogous to California grasslands, savanna, and chaparral, respectively).
B. Invades 1 or 2 ecological types that exist but are not yet invaded in your state.
C. Invades elsewhere but only in ecological types that it has already invaded in the state.
D. Not known as an escape anywhere else.
U. Unknown.
C. Already invaded Other Published Material
3.1 Ecological amplitude/Range
(see Worksheet C)
Refer to Worksheet C and select the one letter below that indicates the number of different ecological types that this species invades.
A. Widespread—the species invades at least three major types or at least six minor types.
B. Moderate—the species invades two major types or five minor types.
C. Limited—the species invades only one major type and two to four minor types.
D. Narrow—the species invades only one minor type.
U. Unknown.
A. Widespread Other Published Material
Distribution
Section 3 Scoring Matrix
Q 3.1Q 3.2Score
AA, BA
AC,D,UB
BAA
BB,CB
BDC
CA,BB
CC,DC
DAB
DB,CC
DDD
A,BUC
C,DUD
UUU


Total Score
B
3.2 Distribution/Peak frequency
(see Worksheet C)
To assess distribution, record the letter that corresponds to the highest percent infested score entered in Worksheet C for any ecological type.
D. Very low Observational

Table 3. Documentation

Scores are explained in the "Criteria for Categorizing Invasive Non-Native Plants that Threaten Wildlands".
Short citations may be used in this table. List full citations at end of this table.

Section 1: Impact

Reviewed Scientific Publication B Question 1.1 Impact on abiotic ecosystem processes
Consider the impact on the natural range and variation of abiotic ecosystem processes and system-wide parameters in ways that significantly diminish the ability of native species to survive and reproduce. Alterations that determine the types of communities that can exist in a given area are of greatest concern. Examples of abiotic processes include:
- fire occurrence, frequency, and intensity;
- geomorphological changes such as erosion and sedimentation rates;
- hydrological regimes, including soil water table;
- nutrient and mineral dynamics, including salinity, alkalinity, and pH;
- light availability (e.g. when an aquatic invader covers an entire water body that would otherwise be open).

Select the one letter below that best describes this species’ most severe impact on an abiotic ecosystem process:
A. Severe, possibly irreversible, alteration or disruption of an ecosystem process.
B. Moderate alteration of an ecosystem process.
C. Minor alteration of an ecosystem process.
D. Negligible perceived impact on an ecosystem process.
U. Unknown.
Identify ecosystem processes impacted:
Increases erosion along streambanks.

Sources of information:
1. Sheley, R.L, J.S. Jacobs, and M. F. Carpinelli. 1998. Distribution, biology, and management of diffuse knapweed (Centaurea diffusa) and spotted knapweed (Centaurea maculosa). Weed Technology. 12:353-362

Reviewed Scientific Publication A Question 1.2 Impact on plant community composition,
structure, and interactions
Consider the cumulative ecological impact of this species to the plant communities it invades. Give more weight to changes in plant composition, structure, and interactions that involve rare or keystone species or rare community types. Examples of severe impacts include:
- formation of stands dominated (>75% cover) by the species;
- occlusion (>75% cover) of a native canopy, including a water surface, that eliminates or degrades layers below;
- significant reduction or extirpation of populations of one or more native species.

Examples of impacts usually less than severe include:
- reduction in propagule dispersal, seedling recruitment, or survivorship of native species;
- creation of a new structural layer, including substantial thatch or litter, without elimination or replacement of a pre-existing layer;
- change in density or depth of a structural layer;
- change in horizontal distribution patterns or fragmentation of a native community;
- creation of a vector or intermediate host of pests or pathogens that infect native plant species.

Select the one letter below that best describes this species’ impact on community composition, structure and interactions:
A. Severe alteration of plant community composition, structure, or interactions.
B. Moderate alteration of plant community composition.
C. Minor alteration of community composition.
D. Negligible impact known; causes no perceivable change in community composition, structure, or interactions.
U. Unknown.
Identify type of impact or alteration:
Reduces biodiversity (1). Compounds in shoots extracts reduce germination of other species through allelopathy (2,3) and it has a stronger negative effect on North American plants than on plants that evolved with knapweed in Eurasia (2). Can form monocultures, although populations in California are mostly small patches due to eradication efforts (1). Formation of monotypic stands is aided by the fact that seedling emergence is distributed over several weeks, allowing diffuse knapweed to occupy all available safe sites (4).

Sources of information:
1. Sheley et al. 1998 2. Callaway, R., and E. T. Aschehoug. 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science. 290:521-523 3. Muir, A. D., and W. Majak. 1983. Allelopathic potential of diffuse knapweed (Centaurea diffusa) extracts. Canadian Journal of Plant Sciences. 63:989-996 4. Sheley, R. L., and L. L. Larson. 1996. Emergence date effects on resource partitioning between diffuse knapweed seedlings. Journal of Range Management. 49:241-244.

Reviewed Scientific Publication B Question 1.3 Impact on higher trophic levels
Consider the cumulative impact of this species on the animals, fungi, microbes, and other organisms in the communities that it invades. Although a non-native species may provide resources for one or a few native species (e.g. by providing food, nesting sites, etc.), the ranking should be based on the species’ net impact on all native species. Give more weight to changes in composition and interactions involving rare or keystone species or rare community types.
Examples of severe impacts include:
- extirpation or endangerment of an existing native species or population;
- elimination or significant reduction in native species’ nesting or foraging sites, cover, or other critical resources (i.e., native species habitat), including migratory corridors.

Examples of impacts that are usually less than severe include:
- minor reduction in nesting or foraging sites, cover, etc. for native animals;
- minor reduction in habitat connectivity or migratory corridors;
- interference with native pollinators;
- injurious components, such as awns or spines that damage the mouth and gut of native wildlife species, or production of anti-digestive or acutely toxic chemical that can poison native wildlife species.

Select the one letter below that best describes this species’ impact on community composition and interactions:
A. Severe alteration of higher trophic populations, communities, or interactions.
B. Moderate alteration of higher trophic level populations, communities, or interactions.
C. Minor alteration of higher trophic level populations, communities or interactions.
D. Negligible impact; causes no perceivable change in higher trophic level populations, communities, or interactions.
E. Unknown.
Identify type of impact or alteration:
Reduces forage for livestock and wildlife, but is grazed by deer. Elk foraging was reduced by 98% on plots of C. maculosa (1). Presumably, diffuse knapweed would act the same. There is anecdotal evidence that diffuse knapweed contains a compound that, when absorbed through the skin through cuts or abrasions, can cause benign tumors in humans, although there is no medical literature on this. Anyone working with diffuse knapweed should wear gloves as a precaution (2).

Sources of information:
1. Sheley et al. 1998 2. Carpenter, A. T., and T. A. Murray. 1998. Element Stewardship Abstract for Centaurea diffusa. The Nature Conservancy, Arlington, VA. http://tncweeds.ucdavis.edu.

Other Published Material D Question 1.4 Impact on genetic integrity
Consider whether the species can hybridize with and influence the proportion of individuals with non-native genes within populations of native species. Mechanisms and possible outcomes include:
- production of fertile or sterile hybrids that can outcompete the native species;
- production of sterile hybrids that lower the reproductive output of the native species.

Select the one letter below that best describes this species’ impact on genetic integrity:
A. Severe (high proportion of individuals).
B. Moderate (medium proportion of individuals).
C. Minor (low proportion of individuals).
D. No known hybridization.
U. Unknown.
Identify impacts:
None. There are no native Centaurea spp. in California.

Sources of information:
Hickman, J. C. (ed.) 1993. The Jepson Manual, Higher Plants of California. University of California Press. Berkeley, CA

Section 2: Invasiveness

Reviewed Scientific Publication B Question 2.1 Role of anthropogenic and natural disturbance
in establishment
Assess this species’ dependence on disturbance—both human and natural—for establishment in wildlands. Examples of anthropogenic disturbances include:
- grazing, browsing, and rooting by domestic livestock and feral animals;
- altered fire regimes, including fire suppression;
- cultivation;
- silvicultural practices;
- altered hydrology due to dams, diversions, irrigation, etc.;
- roads and trails;
- construction;
- nutrient loading from fertilizers, runoff, etc.

Examples of natural disturbance include:
- wildfire;
- floods;
- landslides;
- windthrow;
- native animal activities such as burrowing, grazing, or browsing.

Select the first letter in the sequence below that describes the ability of this species to invade wildlands:
A. Severe invasive potential—this species can establish independent of any known natural or anthropogenic disturbance.
B. Moderate invasive potential—this species may occasionally establish in undisturbed areas but can readily establish in areas with natural disturbances.
C. Low invasive potential—this species requires anthropogenic disturbance to establish.
D. No perceptible invasive potential—this species does not establish in wildlands (though it may persist from former cultivation).
U. Unknown.
Describe role of disturbance:
Invades highly disturbed areas such as roadsides and overgrazed grasslands, but can also invade after minor disturbance such as a hailstorm, rodent activity, or light grazing (1, 2,3). Disturbance greatly increases the the rate and final density of diffuse knapweed and allows it to invade a wider range of habitats (1).

Sources of information:
1. Sheley et al. 1998 2. Myers, J. H., and D. E. Berube. 1983. Diffuse knapweed invasion into rangeland in the dry interior of British Columbia. Canadian Journal of Plant Sciences. 63:981-987. 3. Lacey, J., P. Husby, and G. Handl. 1990. Observations on spotted and diffuse knapweed invasion into ungrazed bunchgrass communities in western Montana. Rangelands. 12: 30-32.

Observational B Question 2.2 Local rate of spread with no management
Assess this species’ rate of spread in existing localized infestations where the proportion of available habitat invaded is still small when no management measures are implemented.

Select the one letter below that best describes the rate of spread:
A. Increases rapidly (doubling in <10 years)
B. Increases, but less rapidly
C. Stable
D. Declining
U. Unknown
Describe rate of spread:
Has spread at very rapid rates in other western states. In California, the rate of spread appears to be a bit slower, probably due to the efforts of CDFA to manage the species.

Sources of information:
DiTomaso, observational.

Other Published Material D Question 2.3 Recent trend in total area infested within state
Assess the overall trend in the total area infested by this species statewide. Include current management efforts in this assessment and note them.

Select the one letter below that best describes the current trend:
A. Increasing rapidly (doubling in total range statewide in <10 years)
B. Increasing, but less rapidly
C. Stable
D. Declining
U. Unknown
Describe trend:
In California, diffuse knapweed primarily occurs as single plants or small patches and is under eradication through biological control in most areas (1). Stable to declining/decreasing statewide because of treatment efforts (2, 3). Once the seed production has been controlled, infestation levels drop rapidly (3).

Sources of information:
1. Joley, D. B., and D. M. Woods. 1996. Biological control of diffuse knapweed, Centaurea diffusa. California Department of Food and Agriculture, Biological Control Program Annual Summary, 1996. Sacramento, CA 2. Carri Pirosko, California Dept. of Food and Agriculture. e-mail 11/29/05 3. Marla Knight, botanist, Klamath National Forest. e-mail 11/29/05

Reviewed Scientific Publication A Question 2.4 Innate reproductive potential
Assess the innate reproductive potential of this species. Worksheet A is provided for computing the score.
Describe key reproductive characteristics:
Typically biennial, sometimes annual or short-lived perennial. Obligate outcrosser. Flowers June-September. Seeds can persist in soil for many years. Purple-flowered plants were shown to set significantly more seed than white-flowered plants, event though white-flowered plants out-numbered purple-flowered plants and major insect visitors did not discriminate according to color. Seed production in Washington averaged 11,200 to 48, 100 seeds per square meter.

Sources of information:
DiTomaso, J.M., and E. Healy. 2006. Weeds of California and Other Western States Harrod, R. J., and R. J. Taylor. 1995. Reproduction and pollination biology of Centaurea and Acroptilon species, with emphasis on C. diffusa. Northwest Science. 69:97-105.

Reviewed Scientific Publication A Question 2.5 Potential for human-caused dispersal
Assess whether this species is currently spread—or has high potential to be spread—by direct or indirect human activity. Such activity may enable the species to overcome natural barriers to dispersal that would not be crossed otherwise, or it may simply increase the natural dispersal of the species. Possible mechanisms for dispersal include:
- commercial sales for use in agriculture, ornamental horticulture, or aquariums;
- use as forage, erosion control, or revegetation;
- presence as a contaminant (seeds or propagules) in bulk seed, hay, feed, soil, packing materials, etc.;
- spread along transportation corridors such as highways, railroads, trails, or canals;
- transport on boats or boat trailers.

Select the one letter below that best describes human-caused dispersal and spread:
A. High—there are numerous opportunities for dispersal to new areas.
B. Moderate—human dispersal occurs, but not at a high level.
C. Low—human dispersal is infrequent or inefficient.
D. Does not occur.
U. Unknown.
Identify dispersal mechanisms:
Can be spread by hitchhiking in the frames of vehicles (1). Was originally introduced to the United States in contaminated alfalfa, and spread further in alfalfa and hay (2).

Sources of information:
1. Roche and Roche 1999 2. Sheley et al. 1998

Other Published Material B Question 2.6 Potential for natural long-distance dispersal
We have chosen 1 km as the threshold of "long-distance." Assess whether this species is frequently spread, or has high potential to be spread, by animals or abiotic mechanisms that can move seed, roots, stems, or other propagules this far. The following are examples of such natural long-distance dispersal mechanisms:
- the species’ fruit or seed is commonly consumed by birds or other animals that travel long distances;
- the species’ fruits or seeds are sticky or burred and cling to feathers or hair of animals;
- the species has buoyant fruits, seeds, or other propagules that are dispersed by flowing water;
- the species has light propagules that promote long-distance wind dispersal;
- The species, or parts of it, can detach and disperse seeds as they are blown long distances (e.g., tumbleweed).

Select the one letter below that best describes natural long-distance dispersal and spread:
A. Frequent long-distance dispersal by animals or abiotic mechanisms.
B. Occasional long-distance dispersal by animals or abiotic mechanisms.
C. Rare dispersal more than 1 km by animals or abiotic mechanisms.
D. No dispersal of more than 1 km by animals or abiotic mechanisms.
U. Unknown.
Identify dispersal mechanisms:
Ball-shaped plants can be spread by the wind, similar to tumbleweed. Seeds are lost gradually, allowing them to spread long distances. Plants can also be carried in rivers and irrigation systems.

Sources of information:
1. Roche and Roche 1999

Other Published Material C Question 2.7 Other regions invaded
Assess whether this species has invaded ecological types in other states or countries outside its native range that are analogous to ecological types not yet invaded in your state (see Worksheets B, C, and D for California, Arizona, and Nevada, respectively, in Part IV for lists of ecological types). This information is useful in predicting the likelihood of further spread within your state.

Select the one letter below that best describes the species' invasiveness in other states or countries, outside its native range.
A. This species has invaded 3 or more ecological types elsewhere that exist in your state and are as yet not invaded by this species (e.g. it has invaded Mediterranean grasslands, savanna, and maquis in southern Europe, which are analogous to California grasslands, savanna, and chaparral, respectively).
B. Invades 1 or 2 ecological types that exist but are not yet invaded in your state.
C. Invades elsewhere but only in ecological types that it has already invaded in the state.
D. Not known as an escape anywhere else.
U. Unknown.
Identify other regions:
Native to Eurasia. Occurs in all western states, some central and eastern states, especially Illinois and surrounding states. Listed as a noxious weed in several states (1).

Sources of information:
1. DiTomaso and Healy 2006

Section 3: Distribution

Other Published Material A Question 3.1 Ecological amplitude/Range
Refer to Worksheet C and select the one letter below that indicates the number of different ecological types that this species invades.
A. Widespread—the species invades at least three major types or at least six minor types.
B. Moderate—the species invades two major types or five minor types.
C. Limited—the species invades only one major type and two to four minor types.
D. Narrow—the species invades only one minor type.
U. Unknown.
Describe ecological amplitude, identifying date of source information and approximate date of introduction to the state, if known:
Occurs in the North Coast, North Coast Ranges (Del Norte, Humboldt, Mendocino Cos.), Klamath Ranges (Trinity Co.), Cascade Ranges (Siskiyou, Shasta Cos.), north and central Sierra Nevada (Plumas, Nevada, sc Placer, e El Dorado, e Amador Cos), northern Sacramento Valley (c&e Tehama, sc Glenn, s Sutter, n Sacramento Cos), Modoc Plateau (Modoc, Lassen Cos), southern San Francisco Bay region (ne Santa Clara Co.), South Coast Ranges (se Monterey Co.), South Coast (Los Angeles, San Diego Cos), to 2300m. A population that has been eradicated occurred in the central area of the border between Mariposa and Madera counties (1). Habitats invaded (based on eradication projects listed in NRPI database): oak woodlands, blue oak-foothill pine, pasture, mixed evergreen forest, Great Basin scrub, coastal prairie, north coast coniferous forest, riparian forest and woodland, valley and foothill grassland (2) Mainly invades roadsides, waste areas, and rangelands. Found in some dry/seasonal creek beds in Siskiyou County. Mostly dry areas rather than true riparian areas (3).

Sources of information:
1. DiTomaso and Healy 2006 2. Natural Resources Projects Inventory. Database of conservation and monitoring projects in California. Available: http://www.ice.ucdavis.edu/nrpi/. Accessed 11/28/05 3. Carri Pirosko, California Dept. of Food and Agriculture. e-mail 11/29/05.

Observational D Question 3.2 Distribution/Peak frequency
To assess distribution, record the letter that corresponds to the highest percent infested score entered in Worksheet C for any ecological type.
Describe distribution:
Mostly small infestations/patches; many single to small plants/patches that are eradicated.

Sources of information:
Carri Pirosko, California Dept. of Food and Agriculture. e-mail 11/29/05

Worksheet A - Innate reproductive potential

Reaches reproductive maturity in 2 years or less Yes, 1 points
Dense infestations produce >1,000 viable seed per square meter Yes, 2 points
Populations of this species produce seeds every year. Yes, 1 points
Seed production sustained over 3 or more months within a population annually Yes, 1 points
Seeds remain viable in soil for three or more years Yes, 2 points
Viable seed produced with both self-pollination and cross-pollination No
Has quickly spreading vegetative structures (rhizomes, roots, etc.) that may root at nodes No
Fragments easily and fragments can become established elsewhere Yes, 2 points
Resprouts readily when cut, grazed, or burned Unknown
Total points: 9
Total unknowns: 1
Total score: A
Scoring Criteria for Worksheet A
A. High reproductive potential (6 or more points).
B. Moderate reproductive potential (4-5 points).
C. Low reproductive potential (3 points or less and less than 3 Unknowns).
U. Unknown (3 or fewer points and 3 or more Unknowns).
Note any related traits:
Return to Table 2

Worksheet B - Arizona Ecological Types is not included here


Worksheet C - California Ecological Types
 
(sensu Holland 1986)

Major Ecological Types Minor Ecological Types Code
A means >50% of type occurrences are invaded;
B means >20% to 50%;
C means >5% to 20%;
D means present but ≤5%;
U means unknown (unable to estimate percentage of occurrences invaded)
Marine Systemsmarine systems
Freshwater and Estuarine lakes, ponds, reservoirs
Aquatic Systemsrivers, streams, canals
estuaries
Dunescoastal
desert
interior
Scrub and Chaparralcoastal bluff scrub
coastal scrub
Sonoran desert scrub
Mojavean desert scrub (incl. Joshua tree woodland)
Great Basin scrubD. < 5%
chenopod scrub
montane dwarf scrub
Upper Sonoran subshrub scrub
chaparral
Grasslands, Vernal Pools, coastal prairieD. < 5%
Meadows, and other Herbvalley and foothill grassland
CommunitiesGreat Basin grassland
vernal pool
meadow and seep
alkali playa
pebble plain
Bog and Marshbog and fen
marsh and swamp
Riparian and Bottomland habitatriparian forestD. < 5%
riparian woodlandD. < 5%
riparian scrub (incl.desert washes)
Woodlandcismontane woodlandD. < 5%
piñon and juniper woodland
Sonoran thorn woodland
Forestbroadleaved upland forest
North Coast coniferous forestD. < 5%
closed cone coniferous forest
lower montane coniferous forest
upper montane coniferous forest
subalpine coniferous forest
Alpine Habitatsalpine boulder and rock field
alpine dwarf scrub
Amplitude (breadth)  
Distribution (highest score)  
Return to Table 2

Addendum J - Jepson Regions Infested
 
Click here for a map of Jepson regions

Infested Jepson Regions:
Check the boxes to indicate the Jepson floristic provinces in which this species is found.














Addendum L - External Links & Resources

Cal-IPC Plant Profile
The Cal-IPC Plant Profile for this species.
http://www.cal-ipc.org/ip/management/plant_profiles/Centaurea_diffusa.php
Calflora Plant Profile:
The Calflora Plant Profile for this species.
http://www.calflora.org/cgi-bin/species_query.cgi?where-calrecnum=1847
CalWeedMapper:
Load CalWeedMapper with this species already selected.
http://calweedmapper.cal-ipc.org/maps/?species=11